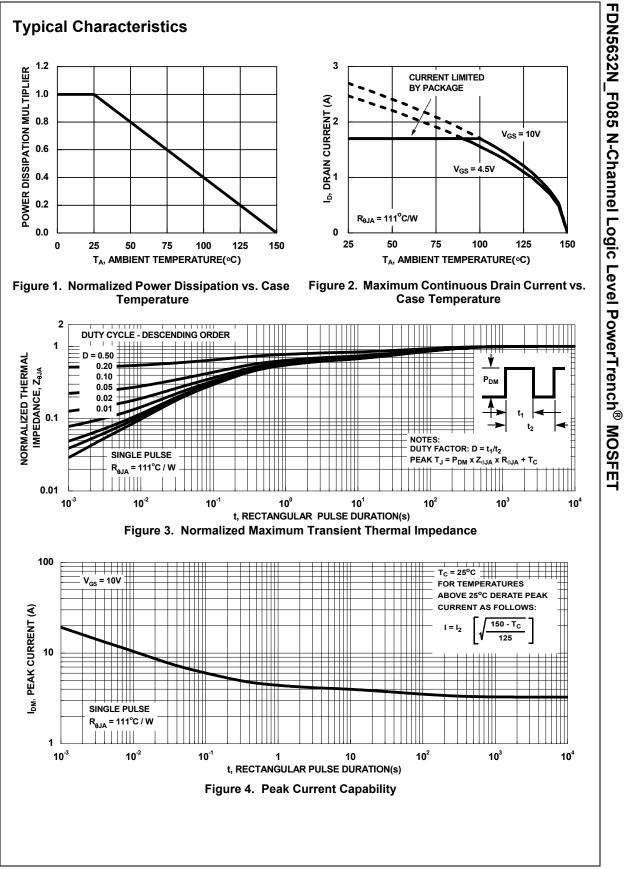
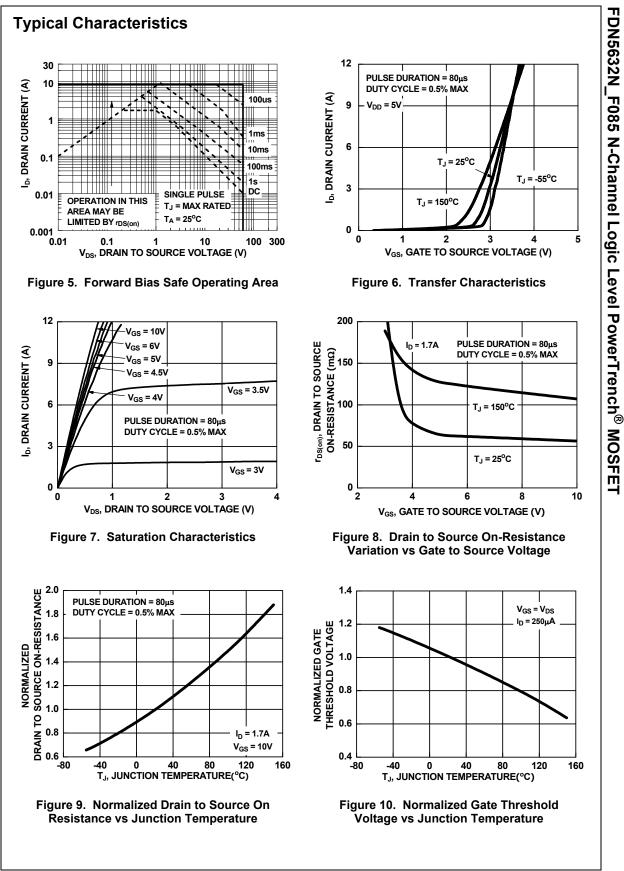


MOSFET Maximum Ratings T_A = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units	
V _{DSS}	Drain to Source Voltage	60	V	
V _{GS}	Gate to Source Voltage	±20	V	
	Drain Current Continuous (V _{GS} = 10V)	1.7	•	
D	Pulsed	10	— A	
E _{AS}	Single Pulse Avalanche Energy (Note 1)	74	mJ	
P _D	Power Dissipation	1.1	W	
T _J , T _{STG}	Operating and Storage Temperature	-55 to +150	°C	
$R_{\theta JC}$	Thermal Resistance Junction to Case	75	°C/W	
$R_{\theta JA}$	Thermal Resistance Junction to Ambient TO-252, 1in ² copper pad area	111	°C/W	

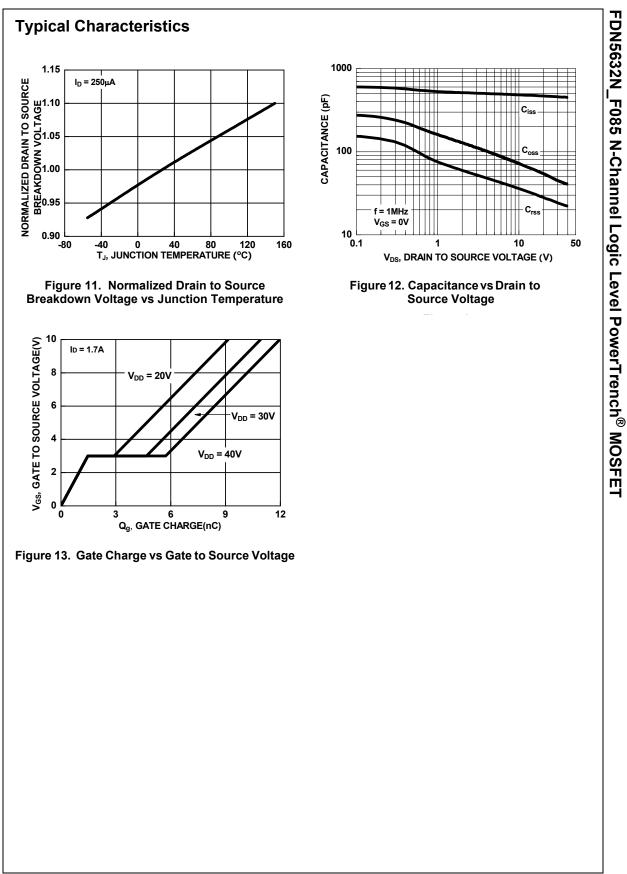
Note:

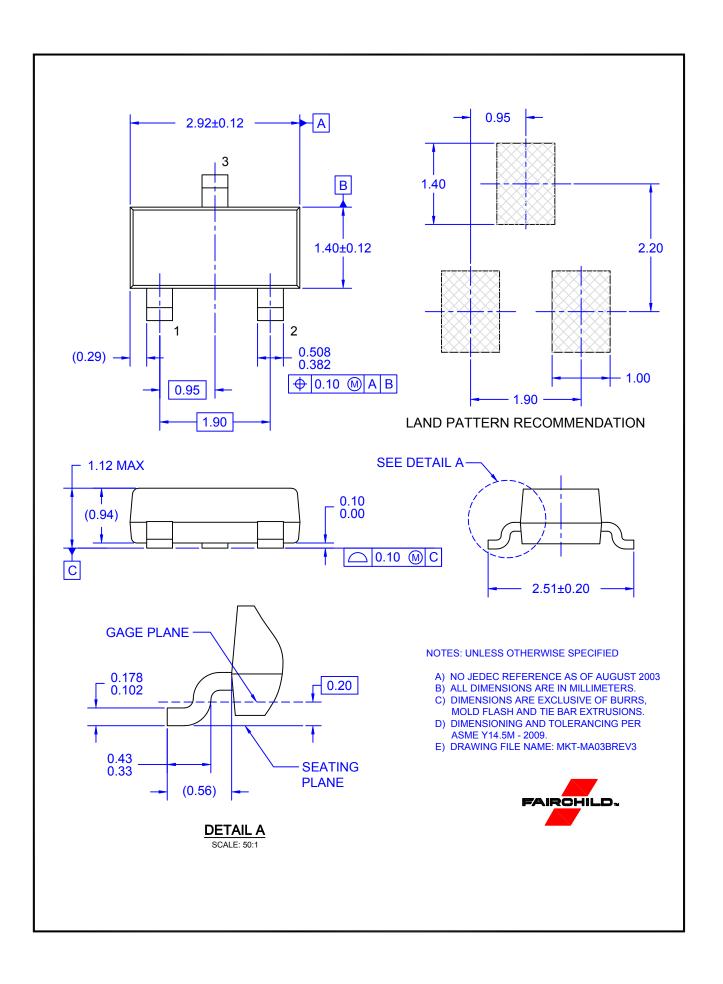

1: E_{AS} of 74mJ is 100% test at L=80mH, I_{AS} =1.4A, starting T_{J} = 25 $^{\circ}C$

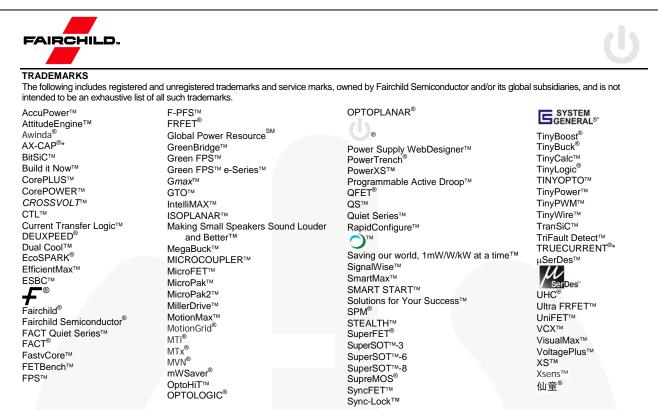

Package Marking and Ordering Information

Device Marking	Device	Package	Reel Size	Tape Width	Quantity
5632	FDN5632N_F085	SSOT3	7"	8mm	3000 units
			1		<u> </u>
15 Fairchild Semicon	ductor Corporation		1		www.fairchildsemi.c

	Parameter	Test Conditions	Min	Тур	Max	Units	
off Cha	racteristics						
BVDSS	Drain to Source Breakdown Voltage	I _D = 250μA, V _{GS} = 0V	60	-	-	V	
1033		$V_{\rm DS} = 48V,$	-	-	1	-	
DSS	Zero Gate Voltage Drain Current	$V_{GS} = 0V \qquad T_A = 125^{\circ}C$	-	-	250	μA	
GSS	Gate to Source Leakage Current	$V_{GS} = \pm 20V$	-	-	±100	nA	
)n Cha	racteristics						
/ _{GS(th)}	Gate to Source Threshold Voltage	V _{GS} = V _{DS} , I _D = 250μA	1	2.0	3	V	
GS(th)		$I_{\rm D} = 1.7$ A, $V_{\rm GS} = 10$ V	-	57	82		
		$I_D = 1.6A, V_{GS} = 6V$	-	62	88	-	
DS(on)	Drain to Source On Resistance	$I_D = 1.6A, V_{GS} = 4.5V$		70	98	mΩ	
DS(on)		$I_{\rm D} = 1.7$ A, $V_{\rm GS} = 10$ V,		10	50	11152	
		$T_A = 150^{\circ}C$	-	107	135		
ynami	c Characteristics						
Siss	Input Capacitance		-	475	-	pF	
2 _{0SS}	Output Capacitance	$V_{\rm DS}$ = 15V, $V_{\rm GS}$ = 0V,	-	60	-	pF	
- Crss	Reverse Transfer Capacitance	f = 1MHz	-	30	_	pF	
				1.4		Ω	
	Gate Resistance	f = 1MHz					
₹ _G	Gate Resistance	f = 1MHz	-		- 12		
₹ _G ⊋ _{g(TOT)}	Total Gate Charge at 10V	$V_{GS} = 0$ to 10V $V_{DD} = 20V$	-	9.2	12	nC	
G g(TOT) gs gd		$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$			- - -		
R _G A _{g(TOT)} A _{gs} A _{gd} E lectr i	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge cal Characteristics T _A = 2	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$	-	9.2 1.5	-	nC nC	
R _G Δ _{g(TOT)} Δ _{gs} Δ _{gd} Electri Symbol	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge cal Characteristics T _A = 2	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted	-	9.2 1.5 1.4	-	nC nC nC	
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted	-	9.2 1.5 1.4	-	nC nC nC	
R _G Q _{g(TOT)} Q _{gs} Q _{ga} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter hing Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$	- - - Min	9.2 1.5 1.4 Typ	- - Max	nC nC nC	
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2 Parameter hing Characteristics Turn-On Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - Min	9.2 1.5 1.4 Typ	- - Max	nC nC nC Unit:	
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2 Parameter hing Characteristics Turn-On Time Turn-On Delay Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$	- - - Min	9.2 1.5 1.4 Typ - 15 1.7	- - Max 30 -	nC nC nC Units	
3 G 2g(TOT) 2 2gg 3 2gg 3 Symbol 3 Switch 3 on 4(on) r 4(off)	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2: Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - -	9.2 1.5 1.4 Typ	- - - - - - - -	nC nC nC Units	
R_G $Q_{g(TOT)}$ Q_{gs} Q_{gd} Electri Symbol Switcl on d(on) r d(off) f	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics Tarameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2	- - Max 30 - - -	nC nC nC Units ns ns ns ns	
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r d(off) f off	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics TA = 2: Parameter hing Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2	- - Max 30 - - - -	nC nC nC Units ns ns ns ns ns ns	
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch on d(on) r d(off) f off Drain-S	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ource Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted Test Conditions $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$	- - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 -	- - Max 30 - - - - 12.9	nC nC nC Unit: ns ns ns ns ns	
R _G Q _{g(TOT)} Q _{gs} Q _{gd} Electri Symbol Switch on d(on) r d(off) f off	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$	- - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8	- - - - - - - - - - - - - - - - 12.9	nC nC nC Unit ns ns ns ns ns	
R_G $Q_{g(TOT)}$ Q_{gs} Q_{gd} Electri Symbol Switch Switch on d(on) r d(off) f off Drain-S / _{SD}	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter hing Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time Source Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test \text{ Conditions}$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$ $I_{SD} = 0.85A$	- - - - - - - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8 0.8	- - - - - - - - - - - - - - - - - - -	nC nC nC Units ns ns ns ns ns v	
R _G 2 _{g(TOT)} 2 _{gs} 2 _{gd} Electri Symbol Switch on d(on) r d(off) f off Drain-S	Total Gate Charge at 10V Gate to Source Gate Charge Gate to Drain "Miller" Charge ical Characteristics T _A = 2 Parameter ning Characteristics Turn-On Time Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Turn-Off Time ource Diode Characteristics	$V_{GS} = 0 \text{ to } 10V$ $V_{DD} = 20V$ $I_D = 1.7A$ 5°C unless otherwise noted $Test Conditions$ $V_{DD} = 30V, I_D = 1.0A$ $V_{GS} = 10V, R_{GEN} = 6\Omega$ $I_{SD} = 1.7A$	- - - - - - - - - - -	9.2 1.5 1.4 Typ - 15 1.7 5.2 1.3 - 0.8	- - - - - - - - - - - - - - - - 12.9	nC nC nC Units ns ns ns ns ns	


2





©2015 Fairchild Semiconductor Corporation FDN5632N_F085 Rev. 1.2

www.fairchildsemi.com

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification Product Status		Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Fairchild Semiconductor: FDN5632N_F085