Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor manufacture of the part. ON Semiconductor risk of or unauthorized use, even if such claim alleges that ON semiconductor manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

November 2014

FPF3040 IntelliMAX[™] 18 V-Rated Dual Input Single Output Power-Source-Selector Switch

Features

- Dual-Input, Single-Output Load Switch
- Input Supply Operating Range:
 - 4~10.5 V at V_{IN}
 - 4~6.5 V at V_{BUS}
- Typical R_{ON}:
 - = 95 m Ω at V_{IN}=5 V
 - 70 mΩ at V_{BUS}=5 V
- Bi-Directional Switch for V_{IN} and V_{BUS}
- Slew Rate Controlled:
 - 50 μ s at V_{IN} for < 4.7 μ F C_{OUT}
 - 90 μ s at V_{BUS} for < 4.7 μ F C_{OUT}
- Maximum I_{sw}: 2 A Per Channel
- Break-Before-Make Transition
- Under-Voltage Lockout (UVLO)
- Over-Voltage Lockout (OVLO)
- Thermal Shutdown
- Logic CMOS IO Meets JESD76 Standard for GPIO Interface and Related Power Supply Requirements
- ESD Protected:
 - Human Body Model: >3 kV
 - Charged Device Model: >1.5 kV
 - IEC 61000-4-2 Air Discharge: >15 kV
 - IEC61000-4-2 Contact Discharge: >8 kV

Description

The FPF3040 is a 18 V-rated Dual-Input Single-Output (DISO) load switch consisting of two channels of slew-rate-controlled, low-on-resistance, N-channel MOSFET switches with protection features. The slew-rate-controlled turn-on characteristic prevents inrush current and the resulting excessive voltage droop on the input power rails. The input voltage range operates from 4 V to 6.5 V at V_{BUS} and from 4 V to 10.5 V at V_{IN} to align with the needs of low-voltage portable device power rails.

 $V_{\rm IN}$ and V_{BUS} have the over-voltage protection functionality of typical 12 V and 7.5 V, respectively, to avoid unwanted damage to system.

 V_{IN} and V_{BUS} bi-directional switching allows reverse current from V_{OUT} to V_{IN} or V_{BUS} for On-The-Go, (OTG) Mode. The switching is controlled by logic input EN and V_{IN_SEL} is capable of interfacing directly with low-voltage control signal General-Purpose Input / Output (GPIO).

FPF3040 is available in 1.8 mm x 2.0 mm Wafer-Level Chip-Scale Package (WLCSP), 16-bump, 0.4 mm pitch.

Applications

- Input Power Selection Block Supporting USB and Wireless Charging
- Smartphone / Tablet PC

Ordering	Information
----------	-------------

Par	rt Number	Top Mark	Channel	Typical R _{oN} per Channel at 5V _{IN}	Rise Time (t _R)	Package
		0		95 m Ω for V_{IN}	50 μs for V_{IN}	1.8 mm x 2.0 mm Wafer-Level Chip-Scale
FPF30400C/	-3040007	Qĭ	DISO	70 m Ω for V_{BUS}	90 μs for V_{BUS}	Package (WLCSP), 16-Bump, 0.4 mm Pitch

Pin Configuration

Figure 4. Pin Assignment (Top View)

Figure 5. Pin Assignment (Bottom View)

Pin #	Name	Input / Output	Description		
A1, B1, C1	V _{BUS}	Input / Output	V_{BUS} at USB: Power input / output. bi-directional switch when V_{IN_SEL} = LOW.		
A4, B4, C4	V _{IN}	Input / Output	V _{IN} Supply Input: Power input / output. bi-directional switch when V _{IN_SEL} = HIGH.		
A2, A3, B3, C3	V _{OUT}	Input / Output	Switch Output: Power input / output.		
C2	EN	Input	Enable : Active HIGH. EN voltage $\ge 2.5 \text{ V}$ can power internal circuit when V _{IN} and V _{BUS} are absent. 1 M Ω pull-down resistor is included.		
D4	V _{IN_SEL}	Input / Output	Supply Selector & Status: Input power source selection input and status output. This signal is ignored during EN=LOW.Selector input during EN=HIGH: HIGH = switch V_{IN} to V_{OUT} / LOW = switch V_{BUS} to V_{OUT} .Status output during EN=LOW: HIGH = V_{IN} is used for V_{OUT} / LOW = V_{BUS} is used for V_{OUT} .		
D3 DF_IN		Input	Default Supply Selector during EN=LOW : Input. Floating = VBUS connects to V_{OUT} . LOW means V_{IN} connects to V_{OUT} . This signal is ignored during EN=HIGH. 1 µA pull-up current source is included.		
B2	$Other_V_{\text{IN}_\text{AVA}}$	Output	Other Supply Input Status: Open-drain output. $HI-Z = both V_{IN}$ and V_{BUS} are valid.LOW = the other power source is not valid.		
D1, D2	GND		Ground		

Pin Description

	FPF3
	040
	I
el	IntelliMA
to	Хтм
	18
	V-Rat
	led
	Dua
	al In
. h. a	put
led.	Si
lity.	ngle
nit	õ
	Itp
/	₽
	NO NO
N N	- ⁴
С	lou
С	-Ce
/W	Sel
v	lector
	SX SX
V.	itch

Table	able 1. Truth Table						
EN	V _{IN} >UVLO	V _{BUS} >UVLO	V_{IN_SEL}	DF_IN	Other_V _{IN_AVA}	V _{OUT}	Comment
HIGH	х	х	LOW	х	HI-Z if V _{IN} & V _{BUS} >UVLO LOW if V _{IN} or V _{BUS} <uvlo< td=""><td>V_{BUS}</td><td>V_{OUT} is selected by</td></uvlo<>	V _{BUS}	V _{OUT} is selected by
HIGH	х	х	HIGH	х	HI-Z if V _{IN} & V _{BUS} >UVLO LOW if V _{IN} or V _{BUS} <uvlo< td=""><td>V_{IN}</td><td>Bi-directional channel</td></uvlo<>	V _{IN}	Bi-directional channel
LOW	YES	NO	HIGH	Х	LOW	V _{IN}	Automatic selection to
LOW	NO	YES	LOW	х	LOW	V _{BUS}	valid input V _{IN_SEL} is output.
LOW	YES	YES	LOW	Floating	HIGH	V _{BUS}	V _{OUT} is selected by
LOW	YES	YES	HIGH	LOW	HIGH	VIN	DF_IN V _{IN_SEL} is output.
LOW	NO	NO	Х	Х	LOW	Floating	OFF
NI . 4							

Notes:

1. Internal pull-down at EN.

2. 1 µA pull-up current source at DF_IN.

Absolute Maximum Ratings

Stresses exceeding the Absolute Maximum Ratings may damage the device. The device may not function or be operable above the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Symbol		Parameters				
		Continuous		-1.4	40	
V	VIN, VBUS TO GIND	Pulsed, 100 ms	Maximum Non-Repetitive	-2.0	18	V
V PIN	V _{OUT} to GND ⁽³⁾			-0.3	16.0	v
	EN, DF_IN, V _{IN_SEL} , Othe	r_V _{IN_AVA} to GND		-0.3	6.0	
I _{SW}	Maximum Continuous Switch Current per Channel				2	A
t _{PD}	Total Power Dissipation at T _A =25°C				2.25	W
TJ	Operating Junction Temp	perature		-40	+150	°C
T _{STG}	Storage Junction Temperature				+150	°C
Θ_{JA}	Thermal Resistance, Junction-to-Ambient (1in. Square Pad of 2 oz. Copper)				55 ⁽⁴⁾	°C/W
		Human Body Model, JESD22-A114		3		
ESD	Electrostatic Discharge	Charged Device Model, JESD22-C101		1.5		$k \rangle l$
ESD	Capability	IEC61000-4-2	Air Discharge (VIN, VBUS to GND)	15		κv
		System Level ⁽⁵⁾	Contact Discharge (VIN, VBUS to GND)	8		

Notes:

- 3. If external voltage of more than 10.5 V is applied to V_{OUT}, the slew rate should be less than 1 V/ms from 10.5 V.
- 4. Measured using 2S2P JEDEC standard PCB.
- 5. System level ESD can be guaranteed by design.

Recommended Operating Conditions

The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not recommend exceeding them or designing to Absolute Maximum Ratings.

Symbol	Parameters	Min.	Max.	Unit
V _{PIN}	V _{IN}	4.0	10.5	V
	V _{BUS}	4.0	6.5	v
TA	Ambient Operating Temperature	-40	+85	°C

FPF
3040
Itelli
MAXT
^м 18
V-Rated
Dual
Input
Single
Output
Power
-Sourc
e-Sele
ctor S
witch

Electrical Characteristics

 $V_{\text{IN}}\text{=}4$ to 10.5 V, $V_{\text{BUS}}\text{=}4$ to 6.5 V, $T_{\text{A}}\text{=}\text{-}40$ to 85°C unless otherwise noted. Typical values are at $V_{\text{IN}}\text{=}V_{\text{BUS}}\text{=}5$ V, EN=HIGH and $T_{\text{A}}\text{=}25^{\circ}\text{C}$ unless otherwise noted.

Symbol	Parameters	Condition	Min.	Тур.	Max.	Unit
Basic Op	peration					
V _{IN}	have set Marka and		4.0		10.5	V
V _{BUS}	Input voltage		4.0		6.5	V
	Quiecoont Current	I_{OUT} =0 mA, EN=HIGH, V _{IN} or V _{BUS} =5 V		55	120	μA
IQ		$I_{OUT}=0$ mA, EN=5 V, V_{IN} and $V_{BUS}=GND$		33	70	μA
		V_{IN} =8 V, I_{OUT} =200 mA, T_A =25°C		95		
	On Resistance for VIN	V_{IN} =5 V, I_{OUT} =200 mA, T_A =25°C		95	150	mO
		V _{IN} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾			200	
RON		V _{BUS} =6 V, I _{OUT} =200 mA, T _A =25°C		70		
	On Resistance for Vaus	V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C		70	100	mO
		V _{BUS} =5 V, I _{OUT} =200 mA, T _A =25°C to 85°C ⁽⁶⁾			140	11132
VIH	Input Logic High Voltage	V _{IN} =4 V~10.5 V, V _{BUS} =4 V ~ 6.5 V	1.15			V
VIL	Input Logic Low Voltage	V _{IN} =4 V~10.5 V, V _{BUS} =4 V ~ 6.5 V			0.52	V
V _{EN(OTG)}	EN Voltage in OTG Mode ⁽⁶⁾	VIN & VBUS=Float or VIN & VBUS < VUVLO	2.5			V
R _{EN_PD}	Pull-Down Resistance at EN		707	1000	1360	kΩ
Protectio	'n					
Manag	Under-Voltage Lockout Threshold	VIN or VBUS Rising	3.05	3.50	4.00	V
V UVLO		V _{IN} or V _{BUS} Falling	2.55	3.00	3.55	V
V _{UVHYS}	Under-Voltage Lockout Hysteresis			0.5		V
		VIN Rising Threshold	10.85	12.00	13.45	V
Varia	Over-Voltage Lockout Threshold	V _{IN} Falling Threshold		11.5		V
VOVLO	Over-voltage Lockout Threshold	V _{BUS} Rising Threshold	6.52	7.50	8.32	V
		V _{BUS} Falling Threshold		7		V
Manage	Over-Voltage Lockout	VIN		0.5		V
V OVHYS	Hysteresis	V _{BUS}		0.5		V
T _{SDN}	Thermal Shutdown Threshold			150		°C
T _{SDNHYS}	Thermal Shutdown Hysteresis			20		°C
Reverse	Current Blocking				1	
I _{RCB}	VIN or VBUS Current During RCB	Vout=8 V, VIN or VBUS=GND			30	μA
Dynamic	Characteristics					1
	V _{OUT} Rise Time, V _{BUS} ^(6,7)			90		
۲ _R	V_{OUT} Rise Time, $V_{IN}^{(6,7)}$			50		μs
t _F	V _{OUT} Fall Time ^(6,7)	$\overline{me^{(6,7)}}$ V _{IN} =V _{BUS} =5 V, R _L =150 Ω, C _L =4.7 μF,		1.4		ms
t _{TRAN}	Transition Delay ^(6,7)		50	100		ms
t _{SD}	Selection Delay ^(6,7)			50		μs

6. This parameter is guaranteed by characterization and/or design; not production tested.

7. $t_{SD}/t_{TRAN}/t_R/t_F$ are defined in Figure 6.

Figure 10. V_{BUS} Quiescent Current vs. Supply Voltage

V_{Bus} = 4.0V-6.9V

TJ, JUNCTION TEMPERATURE (°C)

Figure 9. VIN Quiescent Current vs. Supply Voltage

(J)

-40

-20

VBUS_On Resistance

Figure 13.V_{IN} On Resistance (mΩ) vs. Supply Voltage Figure 14.V_{BUS} On Resistance (mΩ) vs. Supply Voltage

FPF3040 — IntelliMAX[™] 18 V-Rated Dual Input Single Output Power-Source-Selector Switch

4.5

VIN On Resistance (m^Ω)

7.0

I_{OUT} = 200mA

Operation and Application Information

The FPF3040 is a 18 V, 2 A-rated, Dual-Input Single-Output (DISO) load switch with slew-rate-controlled, low-on-resistance, based-on-N-channel MOSFET. The input operating range is from 4 V to 6.5 V at V_{BUS} and from 4 V to 10.5 V at V_{IN}. The internal circuitry is powered from the highest voltage source among V_{IN}, V_{BUS}, and V_{EN}.

Input Power Source Selection

Input power source can be selected by V_{IN_SEL} and DF_IN, respectively, depending on EN state. When EN is HIGH, the input source is selected by V_{IN_SEL} regardless of DF_IN. If V_{IN_SEL} is LOW, V_{BUS} is selected. If V_{IN_SEL} is HIGH, V_{IN} is selected.

Table 2.	Input	Power	Selection	b١	/ VIN	SEL
					_	_

EN	V _{IN} >UVLO	V _{BUS} >UVLO	V_{IN_SEL}	DF_IN	V_{out}
HIGH	Х	Х	LOW	Х	V_{BUS}
HIGH	Х	Х	HIGH	Х	V_{IN}

When EN is LOW, the input source is selected by DF_IN and the number of valid input sources. If only one input source is valid, or more than UVLO, the source is selected automatically, regardless of DF_IN, to make a charging path in case the battery is depleted. If both V_{BUS} and V_{IN} have valid input sources, the input source is selected by DF_IN. If DF_IN is LOW, V_{IN} is selected. If DF_IN is HIGH or floating, V_{BUS} is selected. DF_IN is biased HIGH with an internal 1 μ A pull-up current source.

Table 3. Input Power Selection by DF_IN

EN	V _{IN} >UVLO	V _{BUS} >UVLO	V_{IN_SEL}	DF_IN	\mathbf{V}_{OUT}
LOW	YES	NO	HIGH	Х	V _{IN}
LOW	NO	YES	LOW	Х	V_{BUS}
LOW	YES	YES	LOW	Floating	V _{BUS}
LOW	YES	YES	HIGH	LOW	V _{IN}
LOW	NO	NO	Х	Х	Floating

 V_{IN_SEL} can be the status output to indicate which input power source is used during EN is LOW. If V_{IN} is used, V_{IN_SEL} shows high. If V_{BUS} is used, V_{IN_SEL} shows LOW. The voltage level of HIGH signal is 5.3 V if any one of

 $V_{\text{IN}},~V_{\text{BUS}}$ or EN is higher than 5.3 V. The signal is highest voltage among $V_{\text{IN}},~V_{\text{BUS}},$ and V_{EN} if none of them is higher than 5.3 V.

EN Voltage for Control Logic Power Supply

Internal control logic is powered from the highest voltage among V_{IN}, V_{BUS}, and V_{EN}. If valid V_{IN} or V_{BUS} higher than UVLO is applied, ON/OFF control by EN should be accomplished with V_{IH}/V_{IL}. If EN powers the internal control block without valid V_{IN} and V_{BUS}, more than 2.5 V is required on the EN pin to operate properly.

Over-Voltage Protection (OVP)

FPF3040 has over-voltage protection at both V_{IN} and V_{BUS}. If V_{IN} or V_{BUS} is higher than 12 V or 7.5 V, respectively, the power switch is off until input voltage is lower than the over-voltage trip level by hysteresis voltage of 0.5 V.

Reverse Power Supply for OTG

FPF3040 has a bi-directional switch so reverse power is allowed for On-The-Go (OTG) operation. Even if both V_{IN} and V_{BUS} are not available, reverse power can be also supported if internal control circuitry is powered by EN.

Reverse-Current Blocking

FPF3040 supports reverse-current blocking during EN LOW and an unselected channel.

Thermal Shutdown

During FPF3040 thermal shutdown, the power switch is turned off if junction temperature reaches over 150°C to avoid damage.

Wireless Charging System

FPF3040 can be used for an input power selector supporting Travel Adaptor (TA) and Wireless Charging (WC) with a single-input-based battery charger or Power Management IC (PMIC), including a charging block as shown in Figure 31. The system can recognize an input power source change between 5 V TA and 5 V WC without detection circuitry because FPF3040 has a 100 ms transition delay. OTG Mode can be supported without an additional power path, such as a MOSFET.

D	E	Х	Y 0.38 mm	
1.96 mm ±0.03 mm	1.76 mm ±0.03 mm	0.28 mm		

RECOMMENDED LAND PATTERN (NSMD PAD TYPE)

TOP VIEW

SIDE VIEWS

NOTES:

- A. NO JEDEC REGISTRATION APPLIES.
- B. DIMENSIONS ARE IN MILLIMETERS.
- C. DIMENSIONS AND TOLERANCE PER ASME Y14.5M, 1994.
- D. DATUM C IS DEFINED BY THE SPHERICAL CROWNS OF THE BALLS.

<u>E</u>PACKAGE NOMINAL HEIGHT IS 586 MICRONS ±39 MICRONS (547-625 MICRONS).

F. FOR DIMENSIONS D, E, X, AND Y SEE PRODUCT DATASHEET.

G. DRAWING FILNAME: MKT-UC016AArev2.

APPROVALS	DATE	EAIB	<u>etu</u>			
L. England	10-26-09	SEMICO				
E. Shacham	10-26-09	10				
ENGR. CHK.						
		0	.4101101	FIIGH, Z	JUUIN BALL	
PROJECTION		SCALE	SIZE	DRAWING NUMBER	2	REV
		N/A	N/A	MKT-l	JC016AA	2
		DO NOT SCALE DRAWING SHEET 1 of			1	

BOTTOM VIEW

* Trademarks of System General Corporation, used under license by Fairchild Semiconductor.

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. TO OBTAIN THE LATEST, MOST UP-TO-DATE DATASHEET AND PRODUCT INFORMATION, VISIT OUR WEBSITE AT <u>HTTP://WWW.FAIRCHILDSEMI.COM</u>, FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

AUTHORIZED USE

Unless otherwise specified in this data sheet, this product is a standard commercial product and is not intended for use in applications that require extraordinary levels of quality and reliability. This product may not be used in the following applications, unless specifically approved in writing by a Fairchild officer: (1) automotive or other transportation, (2) military/aerospace, (3) any safety critical application – including life critical medical equipment – where the failure of the Fairchild product reasonably would be expected to result in personal injury, death or property damage. Customer's use of this product is subject to agreement of this Authorized Use policy. In the event of an unauthorized use of Fairchild's product, Fairchild accepts no liability in the event of product failure. In other respects, this product shall be subject to Fairchild's Worldwide Terms and Conditions of Sale, unless a separate agreement has been signed by both Parties.

ANTI-COUNTERFEITING POLICY

Fairchild Semiconductor Corporation's Anti-Counterfeiting Policy. Fairchild's Anti-Counterfeiting Policy is also stated on our external website, www.fairchildsemi.com, under Terms of Use

Counterfeiting of semiconductor parts is a growing problem in the industry. All manufacturers of semiconductor products are experiencing counterfeiting of their parts. Customers who inadvertently purchase counterfeit parts experience many problems such as loss of brand reputation, substandard performance, failed applications, and increased cost of production and manufacturing delays. Fairchild is taking strong measures to protect ourselves and our customers from the proliferation of counterfeit parts. Fairchild strongly encourages customers to purchase Fairchild parts either directly from Fairchild or from Authorized Fairchild Distributors who are listed by country on our web page cited above. Products customers buy either from Fairchild directly or from Authorized Fairchild Distributors are genuine parts, have full traceability, meet Fairchild's quality standards for handling and storage and provide access to Fairchild's full range of up-to-date technical and product information. Fairchild and our Authorized Distributors will stand behind all warranties and will appropriately address any warranty issues that may arise. Fairchild will not provide any warranty coverage or other assistance for parts bought from Unauthorized Sources. Fairchild is committed to combat this global problem and encourage our customers to do their part in stopping this practice by buying direct or from authorized distributors.

PRODUCT STATUS DEFINITIONS

Definition of Terms				
Datasheet Identification	Product Status	Definition		
Advance Information	Formative / In Design	Datasheet contains the design specifications for product development. Specifications may change in any manner without notice.		
Preliminary	First Production	Datasheet contains preliminary data; supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.		
No Identification Needed	Full Production	Datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve the design.		
Obsolete	Not In Production	Datasheet contains specifications on a product that is discontinued by Fairchild Semiconductor. The datasheet is for reference information only.		

Rev. 177