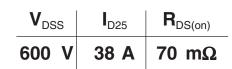
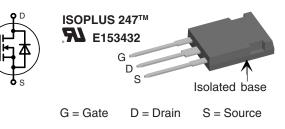
IXKR 40N60C




CoolMOS^{™ 1)} Power MOSFET in ISOPLUS247[™] Package

N-Channel Enhancement Mode Low R_{DSon} , High V_{DSS} MOSFET Package with Electrically Isolated Base

Preliminary data

MOSEET

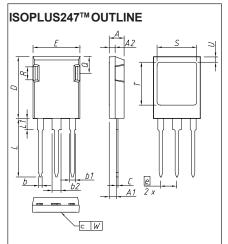
Features

- ISOPLUS247[™] package with DCB Base
- Electrical isolation towards the heatsink - Low coupling capacitance to the heatsink for
- reduced EMI
- High power dissipation
- High temperature cycling capability of chip on DCB
- JEDEC TO-247AD compatible
- Easy clip assembly
- fast CoolMOS^{™ 1)} power MOSFET 3rd generation
 - High blocking capability
 - Low on resistance
- Avalanche rated for unclamped inductive switching (UIS)
- Low thermal resistance
- due to reduced chip thickness
- Enhanced total power density

Applications

- Switched mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)
- Power factor correction (PFC)
- Welding
- Inductive heating

¹⁾ CoolMOS[™] is a trademark of Infineon Technologies AG.


Symbol	Conditions	Maximum F	Maximum Ratings		
V _{DSS}	$T_{vJ} = 25^{\circ}C$ to $150^{\circ}C$	600	V		
V _{GS}		±20	V		
I _{D25} I _{D90}	$T_c = 25^{\circ}C$ $T_c = 90^{\circ}C$	38 25	A A		
dv/dt	$V_{DS} < V_{DSS}; I_F \le 50A; di_F/dt \le 100A/\mu s$ $T_{VJ} = 150^{\circ}C$	6	V/ns		
E _{AS} E _{AR}	$I_{D} = 10 \text{ A}; \text{ L} = 36 \text{ mH}; \text{ T}_{C} = 25^{\circ}\text{C}$ $I_{D} = 20 \text{ A}; \text{ L} = 5 \mu\text{H}; \text{ T}_{C} = 25^{\circ}\text{C}$	1.8 1	J mJ		

Symbol	Conditions (T _{vi} =	Characteristic Values (T _{v1} = 25°C, unless otherwise specified)		
	· vj	min.	typ.	max.
R _{DSon}	$V_{gs} = 10 \text{ V}; I_{D} = I_{D90}$			70 mΩ
V _{GSth}	$V_{_{DS}} = 20 \text{ V}; I_{_{D}} = 3 \text{ mA};$	2.1		3.9 V
I _{DSS}	$V_{_{DS}} = V_{_{DSS}}; V_{_{GS}} = 0 \text{ V}; \text{T}_{_{VJ}} = \begin{array}{c} 25^{\circ}\text{C} \\ \text{T}_{_{VJ}} = 125^{\circ}\text{C} \end{array}$		60	25 μΑ μΑ
I _{gss}	$V_{GS} = \pm 20 \text{ V}; V_{DS} = 0 \text{ V}$			100 nA
Q _g Q _{gs} Q _{gd}	$\begin{cases} V_{GS} = 10 \text{ V}; V_{DS} = 350 \text{ V}; I_{D} = 50 A \end{cases}$	4	250 25 120	nC nC nC
t d(on) t r t d(off) t	$\begin{cases} V_{GS} = 10 \text{ V}; \text{V}_{DS} = 380 \text{ V}; \\ \text{I}_{D} = 50 \text{A}; \text{R}_{G} = 1.8 \Omega \end{cases}$		20 30 110 10	ns ns ns ns
V _F	(reverse conduction) $I_F = 20 \text{ A}; V_{GS} =$: 0 V	0.9	1.1 V
R _{thJC}				0.45 K/W

Component				
Symbol	Conditions	Maximum Ratings		
V _{ISOL}	I _{ISOL} ≤ 1 mA; 50/60 Hz	2500	V~	
T _{vj}		-40+150	°C	
T _{stg}		-40+125	°C	
TL	1.6 mm from case for 10 s	300	°C	
F _c	mounting force with clip	20 120	N	

Symbol	Conditions		Characteristic Values		
		min.	typ.	max.	
C _p	coupling capacity between shorted pins and mounting tab in the case		30	pF	
R _{thCH}	with heatsink compound		0.25	K/W	
Weight			6	g	

DIM.	MILLI	METER	INC	HES
DIM.	MIN	MAX	MIN	MAX
А	4,83	5,21	0,190	0,205
A1	2,29	2,54	0,090	0,100
Α2	1,91	2,16	0,075	0,085
b	1, 14	1,40	0,045	0,055
b1	1,91	2,15	0,075	0,085
b2	2,92	3,20	0, 115	0,126
C	0,61	0,83	0,024	0,033
D	20,80	21,34	0,819	0,840
Ε	15, 75	16,13	0,620	0,635
е	5,45	BSC	0,215 BSC	
L	19,81	20,60	0,780	0,811
L1	3,81	4,38	0,150	0,172
Q	5,59	6,20	0,220	0,244
R	4,32	4,85	0,170	0,191
S	13,21	13, 72	0,520	0,540
T	15, 75	16,26	0,620	0,640
U	1,65	2,03	0,065	0,080
W	-	0,10	-	0,004

of device bottom side This drawing will meet all dimensions requirement of JEDEC outline TO-247 AD except screw hole and except Lmax.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS: IXKR40N60C