LIXYS

DHG 30 I 1200HA

advanced

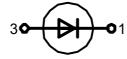
V_{RRM}	=	1200 V
I _{FAV}	=	30 A
t _{rr}	=	75 ns

Package:

TO-247AD

- Industry standard outline
- Epoxy meets UL 94V-0
- RoHS compliant

Sonic-FRD


High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number (Marking on product)

DHG 30 I 1200HA

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
 Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
- Power dissipation within the diode
- Turn-on loss in the commutating switch

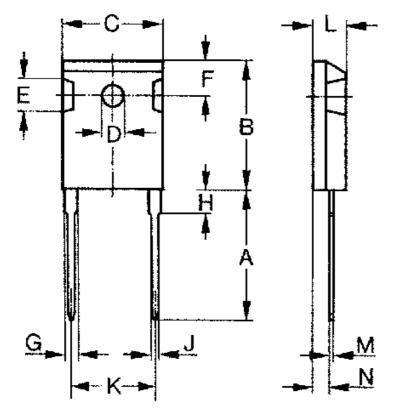
Applications:

- Antiparallel diode for high frequency switching devices
- Antisaturation diode
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power
- supplies (SMPS)
- Uninterruptible power supplies (UPS)

				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit
	max. repetitive reverse voltage		T _{vj} = 25 °C			1200	V
I _R	reverse current	V _R = 1200 V	T _{vJ} = 25 °C			50	μA
		V _R = 1200 V	T _{vj} = 125 °C			5	mA
V _F	forward voltage	I _F = 30 A	T _{vJ} = 25 °C			2.70	V
		I _F = 60 A					V
		I _F = 30 A	T _{vj} = 125 °C			2.40	V
		I _F = 60 A					V
I _{FAV}	average forward current	rectangular, d = 0.5	T _c = 85 °C			30	А
V _{F0}	threshold voltage } for power loss calculation only		T _{vJ} = 150 °C			1.60	V
r _F	slope resistance f Tor power loss	calculation only				26	mΩ
R _{thJC}	thermal resistance junction to case					0.70	K/W
T _{vj}	virtual junction temperature			-55		150	°C
P _{tot}	total power dissipation		T _c = 25 °C			180	W
I _{FSM}	max. forward surge current	$t_p = 10 \text{ ms} (50 \text{ Hz}), \text{ sine}$	T _{vJ} = 45 °C			180	А
I _{RM}	max. reverse recovery current	$I_{\rm F} = 30 {\rm A};$	T _{vJ} = 25 °C		25		А
			T _{vj} = 125 °C				Α
t _r	reverse recovery time	-di _F /dt = 1000 A/µs	T _{vj} = 25 °C		75		ns
		V _R = 800 V	T _{vJ} = 125 °C				ns
C	junction capacitance	$V_{R} = 600 V; f = 1 MHz$	T _{vJ} = 25 °C				pF
E _{AS}	non-repetitive avalanche energy	I _{AS} = A; L = 100 μH	T _{vJ} = 25 °C			tbd	mJ
I _{AR}	repetitive avalanche current	$V_{A} = 1.5 \cdot V_{R}$ typ.; f = 10 kHz				tbd	А

LIXYS

DHG 30 I 1200HA


advanced

				Ratings			
Symbol	Definition	Conditions	min.	typ.	max.	Unit	
I _{RMS}	RMS current	per pin*			70	Α	
R_{thCH}	thermal resistance case to heatsink			0.25		K/W	
M _D	mounting torque		0.8		1.2	Nm	
F _c	mounting force with clip		20		120	Ν	
T _{stg}	storage temperature		-55		150	°C	
Weight				6		g	

* Irms is typically limited by: 1. pin-to-chip resistance; or by 2. current capability of the chip.

In case of 1, a common cathode/anode configuration and a non-isolated backside, the whole current capability can be used by connecting the backside.

Outlines TO-247AD

Dim.	Millimeter		Inches		
	Min.	Max.	Min.	Max.	
A	19.81	20.32	0.780		
B	20.80	21.46	0.819		
C	15.75	16.26	0.610	0.640	
D	3.55	3.65	0.140	0.144	
E	4.32	5.49	0.170	0.216	
F	5.4	6.2	0.212	0.244	
G	1.65	2.13	0.065	0.084	
H	-	4.5	-	0.177	
Ј	1.0	1.4	0.040	0.055	
К	10.8	11.0	0.426	0.433	
L	4.7	5.3	0.185	0.209	
M	0.4	0.8	0.016	0.031	
Ν	1.5	2.49	0.087	0.102	

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS: DHG30I1200HA