-20V to +75V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

General Description

The MAX9918/MAX9919/MAX9920 are single-supply, high-accuracy current-sense amplifiers with a high input common-mode range that extends from -20 V to +75 V . These amplifiers are well suited for current monitoring of inductive loads such as motors and solenoids, where common-mode voltages can become negative due to inductive kickback, reverse-battery conditions, or transient events.
The MAX9918/MAX9920 feature adjustable gain set by an external resistive-divider network. The MAX9919 features fixed gains of 45V/V (MAX9919F) and 90V/V (MAX9919N). The MAX9918/MAX9919/MAX9920 operate as unidirectional amplifiers when VREFIN = GND and as bidirectional amplifiers when $\mathrm{V}_{\text {REFIN }}=\mathrm{V}_{\mathrm{CC}} / 2$. The MAX9920 attenuates the input signal by a factor of 4 at the input level-shifting stage allowing the device to sense voltages up to 200 mV (unidirectional operation) or $\pm 100 \mathrm{mV}$ (bidirectional operation).
The MAX9918/MAX9919/MAX9920 operate with a single 5 V supply voltage, are fully specified over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ automotive temperature range, and are available in an 8-pin SOIC package.

Applications

H-Bridge Motor Current Sensing
Solenoid Current Sensing
Current Monitoring of Inductive Loads
High- and Low-Side Precision Current Sensing
Super-Capacitor Charge/Discharge Monitoring
Precision High-Voltage Current Monitoring

Benefits and Features

- Reduce Protective Clamping for High Inductive Kickback Voltage
- -20 V to +75 V Input Common-Mode Voltage Range
- Supports Wide Range of Precision AC and DC Current Sensing Applications
- Uni- or Bidirectional Current Sensing
- 0.6\% (max) Gain Accuracy Error
- $400 \mu \mathrm{~V}$ (max) Input Offset Voltage
- 120kHz, -3dB Bandwidth (MAX9919N)
- Reference Input for Bidirectional OUT
- Rail-to-Rail Output
- Saves Board Space
- 8-Pin SOIC Package
- Single-Supply Operation (4.5V to 5.5 V)

Ordering Information/

 Selector Guide| PART | VSENSE
 $\mathbf{(m V)}$ | GAIN
 $\mathbf{(V / V)}$ | PIN-
 PACKAGE |
| :--- | :---: | :---: | :--- |
| MAX9918ASA + | ± 50 | Adjustable | 8 SO-EP* |
| MAX9918ASA/V+ | ± 50 | Adjustable | 8 SO-EP* |
| MAX9919FASA + | ± 50 | 45 | 8 SO-EP* |
| MAX9919FASA/V+ | ± 50 | 45 | 8 SO-EP* |
| MAX9919NASA + | ± 50 | 90 | 8 SO-EP* |
| MAX9919NASA/V+ | ± 50 | 90 | 8 SO-EP* |
| MAX9920ASA + | ± 200 | Adjustable | 8 SO-EP* |
| MAX9920ASA/V+ | ± 200 | Adjustable | 8 SO-EP* |

Note: All devices operate over the $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ temperature range.
+Denotes a lead(Pb)-free/RoHS-compliant package. N denotes an automotive qualified part.
*EP = Exposed pad.

Typical Operating Circuit

-20V to +75 V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

ABSOLUTE MAXIMUM RATINGS

c to GN	
RS+, RS- to GND (VCC $=5 \mathrm{~V}$)	-30V to +80V
RS+, RS- to GND ($\left.\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}\right)$.	5 V to +80 V (15 minutes)
Differential Input Voltage (VRS+ (MAX9918/MAX9919). $\pm 15 \mathrm{~V}$ (Continuous)
Differential Input Voltage (VRS+ - VRS_) (MAX9920)	.$\pm 5 \mathrm{~V}$ (Continuous)
REFIN, FB, OUT to GND.	-0.3V to (VCc + 0.3V)
SHDN to GND.-0.3V to +20V
*As per JEDEC51 Standard	board).

Output Short Circuit to VCC or GND.........................Continuo	
Continuous Current into Any Pin	
Continuous Power Dissipation ($\mathrm{T}_{\mathrm{A}}=+70^{\circ} \mathrm{C}$)	
8-Pin SO-EP (derate $24.4 \mathrm{~mW} /{ }^{\circ} \mathrm{C}$ above $+70^{\circ} \mathrm{C}$)1951.2mW**	
Junction Temperature ... $+150^{\circ} \mathrm{C}$	
Storage Temperature Range-65 ${ }^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Lead Temperature (soldering, 10s)	
dering Temperature (refl	26

PACKAGE THERMAL CHARACTERISTICS (Note 1)

SO-EP
Junction-to-Ambient Thermal Resistance ($\theta \mathrm{JA}$) $41^{\circ} \mathrm{C} / \mathrm{W}$
Note 1: Package thermal resistances were obtained using the method described in JEDEC specification JESD51-7, using a four-layer board. For detailed information on package thermal considerations, refer to www.maximintegrated.com/thermal-tutorial.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

ELECTRICAL CHARACTERISTICS

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {RS }}=\mathrm{V}_{\text {RS- }}=+14 \mathrm{~V}\right.$, $\mathrm{V}_{\text {SENSE }}=\left(\mathrm{V}_{\text {RS }}-\mathrm{V}_{\text {RS }}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {GND }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}=\mathrm{V}_{\mathrm{CC}} / 2, R \mathrm{R}=100 \mathrm{k} \Omega$; for $\mathrm{MAX9918}, \mathrm{AV}=$ $90 \mathrm{~V} / \mathrm{N}, \mathrm{R} 2 / \mathrm{R} 1=89 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; for MAX9920, $\mathrm{AV}=20 \mathrm{~V} / \mathrm{N}, \mathrm{R} 2 / R 1=79 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $T_{A}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS			MIN	TYP	MAX	UNITS
Input Offset Voltage (Note 2)	Vos	MAX9918	$\begin{aligned} & \text { V RS+ }=\text { V RS- }= \\ & +14 \mathrm{~V} \text {, VREFIN } \\ & =0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.14	± 0.4	mV
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 0.7	
			$\begin{aligned} & \mathrm{V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFIN}}= \\ & 0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.08	± 0.4	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 1.3	
		MAX9919_	$\begin{aligned} & \mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS- }}= \\ & +14 \mathrm{~V} \text {, VREFIN } \\ & =0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.18	± 0.4	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 0.9	
			$\begin{aligned} & \mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS- }}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.11	± 0.4	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 1.0	
		MAX9920	$\begin{aligned} & \mathrm{V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}-}= \\ & +14 \mathrm{~V} \text {, VREFIN } \\ & =0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.48	± 1.2	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 3.0	
			$\begin{aligned} & \mathrm{V}_{\text {RS }}=\mathrm{V}_{\text {RS- }}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.10	± 0.9	
				$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \\ & \text { to }+125^{\circ} \mathrm{C} \end{aligned}$			± 3.5	

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}=+14 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\text {RS+ }}-\mathrm{V}_{\text {RS- }}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {GND }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}=\mathrm{V}_{\mathrm{CC}} / 2, R_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$; for MAX9918, $\mathrm{AV}=$ $90 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=89 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; for MAX9920, $\mathrm{Av}=20 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=79 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETERS	SYMBOL	CONDITIONS		MIN	TYP	MAX	UNITS
Input Offset Voltage Drift (Note 3)	VOSD	MAX9918	$\mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS }-}=+14 \mathrm{~V}$		± 1.2		$\mu \mathrm{V} /{ }^{\circ} \mathrm{C}$
			$\mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS }-}=-2 \mathrm{~V}$		± 3.3		
		MAX9919_	$V_{\text {RS }+}=V_{\text {RS }-}=+14 \mathrm{~V}$		± 1.8		
			$\mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS }-}=-2 \mathrm{~V}$		± 1.8		
		MAX9920	$\mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS- }}=+14 \mathrm{~V}$		± 2.4		
			$\mathrm{V}_{\text {RS }+}=\mathrm{V}_{\text {RS }-}=-2 \mathrm{~V}$		± 8.8		
Common-Mode Range	VCM	Inferred from CMRR tests		-20		+75	V
Common-Mode Rejection Ratio (Note 3)	CMRR	MAX9918, MAX9919	$-2 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+14 \mathrm{~V}$	80			dB
			$-20 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+75 \mathrm{~V}$	96			
		MAX9920	$-2 \mathrm{~V} \leq \mathrm{VCM} \leq+14 \mathrm{~V}$	72			
			$-20 \mathrm{~V} \leq \mathrm{V}_{\text {CM }} \leq+75 \mathrm{~V}$	86			
Input Bias Current	IRS+, IRS-	$-20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+75 \mathrm{~V}$	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$			± 175	$\mu \mathrm{A}$
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$			± 250	
Input Offset Current	(IRS+ - IRS-)				0	± 8	$\mu \mathrm{A}$
Input Leakage Current in Shutdown		$-20 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CM}} \leq+75 \mathrm{~V}$,	$V_{S H D N}=V_{C C}=5 \mathrm{~V}$			± 30	$\mu \mathrm{A}$
Input Leakage Current		$\mathrm{V}_{\mathrm{RS}}+=\mathrm{V}_{\mathrm{RS}-}=+14 \mathrm{~V}$	$+75 \mathrm{~V}, \mathrm{~V} C \mathrm{C}=0 \mathrm{~V}$			± 30	$\mu \mathrm{A}$
Input Resistance		MAX9918, MAX9919_	Common mode		300		$\mathrm{k} \Omega$
			Differential		715		Ω
		MAX9920	Common mode		330		$\mathrm{k} \Omega$
			Differential		224		Ω
Full-Scale Sense Voltage (Note 4)	VSENSE	Inferred from gain error test	MAX9918, MAX9919_		50		mV
			MAX9920		200		
Gain (Notes 2, 4)	G	MAX9918, MAX9920			Adj		V/V
		MAX9919F			45		
		MAX9919N			90		
Minimum Adjustable Gain	GADJ	MAX9918			30		V/V
		MAX9920			7.5		

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}-}=+14 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}}{ }_{+}-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFIN}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$; for MAX9918, $\mathrm{AV}=$ $90 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R1} 1=89 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; for MAX9920, $\mathrm{AV}=20 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=79 \mathrm{k} \Omega / 1 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETER	SYMBOL	CONDITIONS				MIN	TYP	MAX	UNITS
Gain Error (Note 2)	GE	MAX9918	$\begin{aligned} & \mathrm{V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}-}= \\ & +14 \mathrm{~V} \end{aligned}$		$\begin{array}{\|l} \hline \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \\ \mathrm{~V}_{\text {REFIN }}=0 \mathrm{~V} \\ \hline \end{array}$		± 0.08	± 0.6	\%
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C}, \\ & \text { V REFIN }^{2}=0 \mathrm{~V} \end{aligned}$			± 1.2	
			$\begin{aligned} & \mathrm{V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.02	± 0.6	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.0	
		MAX9919F	$\begin{aligned} & \mathrm{V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}= \\ & +14 \mathrm{~V}, \mathrm{~V} \text { REFIN }= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.13	± 0.45	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.2	
			$\begin{aligned} & \text { V RS+ }=\text { V }_{\text {RS- }}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.10	± 0.45	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 0.9	
		MAX9919N	$\begin{aligned} & \mathrm{V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}= \\ & +14 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.16	± 0.6	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.2	
			$\begin{aligned} & \mathrm{V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}= \\ & -2 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.11	± 0.6	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.0	
		MAX9920	$\begin{aligned} & \text { VRS+ }=\text { V RS- }= \\ & +14 \mathrm{~V}, \mathrm{~V} \text { REFIN }= \\ & 0 \mathrm{~V} \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.29	± 1.0	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.7	
			$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}}-= \\ -2 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFIN}}= \\ \mathrm{oV} \end{array} \\ & \hline \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		± 0.24	± 1.0	
					$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to } \\ & +125^{\circ} \mathrm{C} \end{aligned}$			± 1.7	
FB Input Bias Current	IFB	MAX9918, MAX9920					5	15	nA
Output-Voltage High (Note 4)	$\mathrm{V}_{\text {CC }}-\mathrm{V}_{\text {OH }}$	$\begin{aligned} & \hline \text { VSENSE }=200 \mathrm{mV} \text { for } \\ & \text { MAX9918, MAX9919_, } \\ & \text { VSENSE }^{2} 400 \mathrm{mV} \text { for } \\ & \text { MAX9920 } \\ & \hline \end{aligned}$		$R L=100 \mathrm{k} \Omega$ to GND			3	10	mV
				$\mathrm{R}_{\mathrm{L}}=$	$10 \mathrm{k} \Omega$ to GND		12	40	
Output-Voltage Low (Note 4)	VoL	VSENSE $=-200 \mathrm{mV}$ for MAX9918, MAX9919_, VSENSE $=-400 \mathrm{mV}$ for MAX9920		$\mathrm{R}_{\mathrm{L}}=$	$100 \mathrm{k} \Omega$ to $\mathrm{V}_{\text {cc }}$		3	10	mV
				$\mathrm{R}_{\mathrm{L}}=$	$10 \mathrm{k} \Omega$ to VCC		10	40	
Short-Circuit Current	Isc	OUT shorted to VCC					44		mA
		OUT shorted to GND					41		
Output Resistance	Rout						0.1		Ω
REFIN Voltage Range		Inferred from REFIN CMRR test		MAX9	918, MAX9919_	0	V_{CC} /2	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 1.9 \end{gathered}$	V
				MAX9920		0	$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ / 2 \end{gathered}$	$\begin{gathered} \hline \mathrm{V}_{\mathrm{CC}}- \\ 2.4 \end{gathered}$	

ELECTRICAL CHARACTERISTICS (continued)

$\left(V_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\text {RS+ }}=\mathrm{V}_{\text {RS- }}=+14 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\text {RS+ }}-\mathrm{V}_{\text {RS- }}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\text {GND }}=0 \mathrm{~V}, \mathrm{~V}_{\text {REFIN }}=\mathrm{V}_{\mathrm{CC}} / 2, R_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$; for MAX9918, $\mathrm{AV}=$ $90 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=89 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; for MAX9920, $\mathrm{Av}=20 \mathrm{~V} / \mathrm{N}, \mathrm{R} 2 / \mathrm{R} 1=79 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; $\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

ELECTRICAL CHARACTERISTICS (continued)

$\left(\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~V}_{\mathrm{RS}+}=\mathrm{V}_{\mathrm{RS}-}=+14 \mathrm{~V}, \mathrm{~V}_{\text {SENSE }}=\left(\mathrm{V}_{\mathrm{RS}}+-\mathrm{V}_{\mathrm{RS}}\right)=0 \mathrm{~V}, \mathrm{~V}_{\text {SHDN }}=\mathrm{V}_{\mathrm{GND}}=0 \mathrm{~V}, \mathrm{~V}_{\mathrm{REFIN}}=\mathrm{V}_{\mathrm{CC}} / 2, \mathrm{R}_{\mathrm{L}}=100 \mathrm{k} \Omega\right.$; for MAX9918, $\mathrm{AV}=$ $90 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=89 \mathrm{k} \Omega / 1 \mathrm{k} \Omega$; for MAX9920, $\mathrm{AV}=20 \mathrm{~V} / \mathrm{V}, \mathrm{R} 2 / \mathrm{R} 1=79 \mathrm{k} \Omega / 1 \mathrm{k} \Omega ; \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$, unless otherwise noted. Typical values are at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$.) (Note 1)

PARAMETERS	SYMBOL	CONDITIONS		MIN TYP	MAX	UNITS
1\% Settling Time from $\mathrm{V}_{\text {CM }}$ Step		MAX9918, VSENSE $=50 \mathrm{mV}$	$V_{\text {CM }}=-2 \mathrm{~V}$ to +14 V step	2.5		$\mu \mathrm{s}$
			$\mathrm{V}_{\text {CM }}=+14 \mathrm{~V}$ to -2V step	0.5		
		MAX9919F, $V_{\text {SENSE }}=50 \mathrm{mV}$	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to +14 V step	2.5		
			$\mathrm{V}_{\text {CM }}=+14 \mathrm{~V}$ to -2V step	0.5		
		MAX9919N, $V_{\text {SENSE }}=50 \mathrm{mV}$	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to +14 V step	3.5		
			$V_{\text {CM }}=+14 \mathrm{~V}$ to -2V step	3.5		
		MAX9920, VSENSE $=200 \mathrm{mV}$	$\mathrm{V}_{\text {CM }}=-2 \mathrm{~V}$ to +14 V step	0.25		
			$\mathrm{V}_{\mathrm{CM}}=+14 \mathrm{~V}$ to -2V step	2.5		
Power-Up Time		MAX9918, VSENSE $=50 \mathrm{mV}$, 1% settling		4.5		
		MAX9919F, VSENSE $=50 \mathrm{mV}, 1 \%$ settling		5		
		MAX9919N, VSENSE $=50 \mathrm{mV}, 1 \%$ settling		6		μs
		MAX9920, V ${ }_{\text {SENSE }}=200 \mathrm{mV}$, 1% settling		5		
Max Capacitive Load Stability		No sustained oscillations (Note 5)		50		pF
Input-Referred Noise Voltage Density	e_{n}	10 kHz	MAX9918, MAX9919_	60		$\mathrm{nV} / \sqrt{\mathrm{Hz}}$
			MAX9920	174		

Note 1: All devices are 100% production tested at $\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$. All temperature limits are guaranteed by design.
Note 2: $\mathrm{V}_{\text {OS }}$ is extrapolated from two point gain error tests. Measurements are made at $\mathrm{V}_{\text {SENSE }}=5 \mathrm{mV}$ and 50 mV for MAX9918/MAX9919N/MAX9919F, and VSENSE $=20 \mathrm{mV}$ and 200mV for MAX9920.
Note 3: Extrapolated Vos as described above in Note 2 is used to calculate Vos drift, CMRR, and PSRR.
Note 4: OUT should be 100 mV away from either rail to achieve rated accuracy, or limited by a VSENSE of 50 mV for the MAX9918/MAX9919N/MAX9919F and 200mV for the MAX9920.
Note 5: Not production tested. Guaranteed by design.
-20 V to +75 V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Typical Operating Characteristics

($\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN ERROR
($\mathrm{VRS}_{+}=+14 \mathrm{~V}, \mathrm{MAX9919F}, \mathrm{AV}=+45 \mathrm{~V} / \mathrm{V}$)

GAIN ERROR
($\mathrm{V}_{\mathrm{RS}+}=-2 \mathrm{~V}$, MAX9919F, $\mathrm{AV}^{2}=+45 \mathrm{~V} / \mathrm{V}$)

Typical Operating Characteristics (continued)

($\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

GAIN ERROR vs. VcC

LINEARITY vs. VSENSE

GAIN ERROR vs. Vcm

LINEARITY vs. VSENSE

LINEARITY vs. VSENSE

Typical Operating Characteristics (continued)
($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

LINEARITY vs. VSENSE

Vout - Vrefin vs. VSENSE

LINEARITY vs. VSENSE

Vout - VREFIN vs. VSENSE

$\mathrm{V}_{\mathrm{OH}} / \mathrm{V}_{\mathrm{OL}}$ vs. $\mathrm{IOH}_{\mathrm{OH}}$

-20V to +75 V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

DIFFERENTIAL Rin vs. Vcm

GAIN vs. FREQUENCY

GAIN vs. FREQUENCY

PSRR vs. FREQUENCY

Typical Operating Characteristics (continued)

($\mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Typical Operating Characteristics (continued)

($\mathrm{V}_{C C}=5 \mathrm{~V}, \mathrm{~T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$, unless otherwise noted.)

Pin Configuration

Pin Description

PIN	NAME	FUNCTION
1	RS+	Positive Current-Sensing Input. Power side connects to external sense resistor.
2	RS-	Negative Current-Sensing Input. Load side connects to external sense resistor.
3	SHDN	Active-High Shutdown Input. Connect to GND for normal operation.
4	GND	Ground
5	OUT	Current-Sense Output. Vout is proportional to VSENSE.
6	FB	Feedback Input. Connect FB to a resistive-divider network to set the gain for the MAX9918 and MAX9920. See the Adjustable Gain (MAX9918/MAX9920) section for more information. Leave FB unconnected for the MAX9919 for proper operation.
7	REFIN	Reference Input. Set REFIN to VCC/2 for bidirectional operation. Set REFIN to GND for unidirectional operation.
8	VCC	5V Supply Voltage Input. Bypass VCC to GND with 0.14F capacitor.
-	EP	Exposed Pad. Connect to a large-area contiguous ground plane for improved power dissipation. Do not use as the only ground connection for the part.

Detailed Description

The MAX9918/MAX9919/MAX9920 are single-supply, high-accuracy uni-/bidirectional current-sense amplifiers with a high common-mode input range that extends from -20 V to +75 V . The MAX9918/MAX9919/MAX9920's input stage utilizes a pair of level shifters allowing a wide common-mode operating range when measuring the voltage drop (VSENSE) across the current-sense resistor. The first level shifter accommodates the upper commonmode operating range from +2 V to +75 V . When the common-mode voltage falls below +2 V , the second level shifter is used to accommodate negative voltages down to -20 V .

The level shifters translate $\mathrm{V}_{\text {SENSE }}$ to an internal reference voltage where it is then amplified with an instrumentation amplifier. The instrumentation amplifier configuration provides high precision with input offset voltages of $400 \mu \mathrm{~V}$ (max). Indirect feedback of the instrumentation amplifier allows the gain to be adjusted with an external resistive-divider network on the MAX9918/MAX9920. The MAX9919 is a fixed gain device available with laser-trimmed resistors for gains of 45V/V (MAX9919F) and 90V/V (MAX9919N).
The MAX9918/MAX9919 operate with a full-scale sense voltage of 50 mV . The input stage of the MAX9920 provides an attenuation factor of 4, enabling a full-scale sense voltage of 200 mV .

-20 V to +75 V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Uni-/Bidirectional Operation

The MAX9918/MAX9919/MAX9920 support both unidirectional and bidirectional operation. The devices operate in unidirectional mode with VREFIN $=$ VGND. The output is then referenced to ground and the output voltage Vout is proportional to the positive voltage drop (VSENSE) from RS+ to RS- (Figure 1).

The MAX9918/MAX9919 operate in bidirectional mode by application of a low-source impedance reference voltage in the OV to VCC - 1.9 V range, (typically $\mathrm{VCC}_{\mathrm{C}} / 2$), to REFIN. For the MAX9920, the reference voltage range is OV to $\mathrm{V}_{\mathrm{CC}}-2.4 \mathrm{~V}$ (typically $\mathrm{V}_{\mathrm{CC}} / 2$). The output voltage VOUT relative to VREFIN is then proportional to the \pm VSENSE voltage drop from RS+ to RS- (Figure 2).

Figure 1. Unidirectional Operation

Figure 2. Bidirectional Operation

MAX9918/MAX9919/MAX9920

-20 V to +75 V Input Range, Precision Uni-/Bidirectional, Current-Sense Amplifiers

Shutdown Mode

Drive SHDN high to enter low-power shutdown mode. In shutdown mode, the MAX9918/MAX9919/MAX9920 draw $0.5 \mu \mathrm{~A}$ (typ) of quiescent current.

Adjustable Gain (MAX9918/MAX9920)

The MAX9918/MAX9920 feature externally adjustable gain set by a resistive-divider network circuit using resistors R1 and R2 (see the Functional Diagram). The gain frequency compensation is set for a minimum gain of 30V/V for the MAX9918 and 7.5V/V for the MAX9920. The gain G for the MAX9918/MAX9920 is given by the following equation:

$$
G=\left(1+\frac{R 2}{R 1}\right) \text { (for MAX9918) }
$$

and

$$
\mathrm{G}=\left(\frac{\left(1+\frac{\mathrm{R} 2}{\mathrm{R} 1}\right)}{4}\right) \text { (for MAX9920) }
$$

Applications Information

Component Selection

Ideally, the maximum load current develops the fullscale sense voltage across the current-sense resistor. Choose the gain needed to yield the maximum output voltage required for the application:

$$
\text { VOUT }=\text { VSENSE } \times G
$$

where VSENSE is the full-scale sense voltage, 50 mV for the MAX9918/MAX9919, or 200mV for the MAX9920 and G is the gain of the device. G is externally adjustable for the MAX9918/MAX9920. The MAX9919 has a fixed gain version of 45V/V (MAX9919F) or 90V/V (MAX9919N).
In unidirectional applications (VREFIN $=0 \mathrm{~V}$), select the gain of the MAX9918/MAX9920 to utilize the full output range between GND and VCC. In bidirectional applications (VREFIN $=V_{C C} / 2$), select the gain to allow an output voltage range of $\pm \mathrm{VCC} / 2$. VOUT must be at least 100 mV from either rail to achieve the rated gain accuracy.

Sense Resistor, Rsense

Choose RSENSE based on the following criteria:
Accuracy: A high RSENSE value allows lower currents to be measured more accurately. This is because offsets become less significant when the sense voltage is larger. In the linear region (100mV < VOUT < VCC - 100mV), there are two components to accuracy: input offset voltage (VOS) and gain error (GE). Use the linear equation to calculate total error:

$$
\text { VOUT }=(G \pm G E) \times\left(V S E N S E \pm V_{O S}\right)
$$

For best performance, select RSENSE to provide approximately 50 mV (MAX9918/MAX9919) or 200 mV (MAX9920) of sense voltage for the full-scale current in each application. Sense resistors of $5 \mathrm{~m} \Omega$ to $100 \mathrm{~m} \Omega$ are available with 1% accuracy or better.

Efficiency and Power Dissipation

At high current levels, the I2R losses in RSENSE can be significant. Take this into consideration when choosing the resistor value and its power dissipation (wattage) rating. Also, the sense resistor's value might drift if it is allowed to heat up excessively. The precision VOS of the MAX9918/MAX9919/MAX9920 allows the use of small sense resistors to reduce power dissipation and reduce hot spots.
Inductance: Keep inductance low if ISENSE has a large high-frequency component by using resistors with low inductance value.

Power-Supply Bypassing and Grounding

Bypass the MAX9918/MAX9919/MAX9920's VCC to ground with a $0.1 \mu \mathrm{~F}$ capacitor. Grounding these devices requires no special precautions; follow the same cautionary steps that apply to the rest of the system. High-current systems can experience large voltage drops across a ground plane, and this drop may add to or subtract from VOUT. Using a differential measurement between OUT and REFIN prevents this problem. For highest current-measurement accuracy, use a single-point star ground. Connect the exposed pad to a solid ground to ensure optimal thermal performance.

Functional Diagram

Chip Information
PROCESS: BiCMOS

Package Information

For the latest package outline information and land patterns (footprints), go to www.maximintegrated.com/packages. Note that a " + ", " $\#$ ", or "-" in the package code indicates RoHS status only. Package drawings may show a different suffix character, but the drawing pertains to the package regardless of RoHS status.

PACKAGE TYPE	PACKAGE CODE	OUTLINE NO.	LAND PATTERN NO.
8 SO-EP	$\mathrm{S} 8 \mathrm{E}+14$	$\underline{21-0111}$	$\underline{90-0151}$

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	$10 / 09$	Initial release	-
1	$1 / 10$	Updated Functional Diagram	16
2	$12 / 10$	Added automotive qualified part	1
3	$6 / 11$	Added MAX9920ASA/V+ to data sheet	1
4	$7 / 11$	Added automotive qualified parts for the MAX9919NASA/V+ and the MAX9920ASA/V+	1
5	$1 / 13$	Added automotive qualified part for the MAX9919FASA/V+	1
6	$1 / 15$	Updated Applications and Benefits and Features section	1

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery \& Lifecycle Information:

Maxim Integrated:
MAX9919FASA + MAX9919FASA + T MAX9920ASA + T MAX9920ASA + MAX9918ASA + MAX9918ASA + T
$\underline{M A X 9919 N A S A+T}$ MAX9919NASA+ MAX9920ASA/V+T MAX9920ASA/V+ MAX9919FASA/V+

