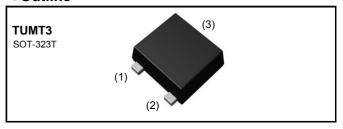


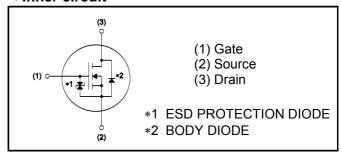
RTF015N03

Nch 30V 1.5A Power MOSFET

V_{DSS}	30V
$R_{DS(on)}(Max.)$	240m $Ω$
I _D	1.5A
P_D	0.8W


Features

- 1) Low on resistance.
- 2) Built-in G-S Protection Diode.
- 3) Small Surface Mount Package (TUMT3).
- 4) Pb-free lead plating; RoHS compliant


Application

DC/DC converters

Outline

•Inner circuit

Packaging specifications

T	Packaging	Taping
	Reel size (mm)	180
	Tape width (mm)	8
Туре	Basic ordering unit (pcs)	3,000
	Taping code	TL
	Marking	PP

● Absolute maximum ratings(T_a = 25°C)

Parameter	Symbol	Value	Unit
Drain - Source voltage	V_{DSS}	30	V
Continuous drain current	I _D *1	±1.5	Α
Pulsed drain current	I _{D,pulse} *2	±6.0	А
Gate - Source voltage	V_{GSS}	12	V
Dower discination	P _D *3	0.8	W
Power dissipation	P _D *4	0.32	W
Junction temperature	T _j	150	°C
Range of storage temperature	T _{stg}	-55 to +150	°C

●Thermal resistance

Parameter	Symbol	Values			Unit
- Farametei	Зуппоп	Min.	Тур.	Max.	Offic
Thermal resistance, junction - ambient	R _{thJA} *3	-	-	156	°C/W
Thermal resistance, junction - ambient	R _{thJA} *4	-	-	391	°C/W

•Electrical characteristics($T_a = 25^{\circ}C$)

Parameter	Symbol	Conditions	Values			Unit
r ai ai ii etei	Symbol	Conditions	Min.	Тур.	Max.	Offic
Drain - Source breakdown voltage	$V_{(BR)DSS}$	$V_{GS} = 0V$, $I_D = 1mA$	30	ı	1	V
Breakdown voltage temperature coefficient	$\frac{\Delta V_{(BR)DSS}}{\Delta T_{j}}$	I _D =1mA referenced to 25°C	1	30	-	mV/°C
Zero gate voltage drain current	I _{DSS}	$V_{DS} = 30V, V_{GS} = 0V$	ı	1	1	μΑ
Gate - Source leakage current	I_{GSS}	$V_{GS} = 12V, V_{DS} = 0V$	1	1	10	μΑ
Gate threshold voltage	$V_{GS(th)}$	V_{DS} = 10V, I_D = 1mA	0.5	ı	1.5	V
Gate threshold voltage temperature coefficient	$\frac{\Delta V_{(GS)th}}{\Delta T_{j}}$	I _D =1mA referenced to 25°C	ı	-2.3	-	mV/°C
		V _{GS} =4.5V, I _D =1.5A	-	170	240	
Static drain - source	. *5	V _{GS} =4V, I _D =1.5A	-	180	250	m()
on - state resistance	$R_{DS(on)}$	V _{GS} =2.5V, I _D =1.5A	1	240	340	mΩ
		V _{GS} =4.5V, I _D =1.5A, T _j =125°C	ı	270	380	
Gate input resistannce	R_{G}	f = 1MHz, open drain	-	17	-	Ω
Transconductance	9 _{fs} *5	V _{DS} =10V, I _D =1.5A	1.5	2.6	-	S

^{*1} Limited only by maximum temperature allowed.

^{*2} Pw \leq 10 $\mu s,~Duty~cycle \leq$ 1%

^{*3} Mounted on a seramic board (30×30×0.8mm)

^{*4} Mounted on a FR4 (15×20×0.8mm)

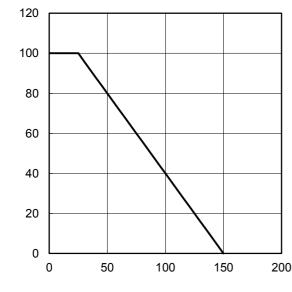
^{*5} Pulsed

•Electrical characteristics($T_a = 25^{\circ}C$)

Parameter	Symbol	Conditions	Values			Unit
Parameter	Symbol	Conditions	Min.	Тур.	Max.	Offic
Input capacitance	C _{iss}	V _{GS} = 0V	-	80	-	
Output capacitance	C _{oss}	V _{DS} = 10V	-	14	-	pF
Reverse transfer capacitance	C_{rss}	f = 1MHz	-	12	-	
Turn - on delay time	t _{d(on)} *5	$V_{DD} \simeq 15V$, $V_{GS} = 4.5V$	-	7	-	
Rise time	t _r *5	I _D = 0.75A	-	9	-	no
Turn - off delay time	t _{d(off)} *5	$R_L = 20\Omega$	-	15	-	ns
Fall time	t _f *5	$R_G = 10\Omega$	-	6	-	

•Gate Charge characteristics($T_a = 25$ °C)

Parameter	Symbol Conditions	Conditions	Values			Unit
		Conditions	Min.	Тур.	Max.	Offic
Total gate charge	Q_g^{*5}		-	1.6	-	
Gate - Source charge	Q _{gs} *5	V _{DD} ≃ 15V, I _D =1.5A V _{GS} = 4.5V	-	0.5	-	nC
Gate - Drain charge	Q _{gd} *5	- 55	-	0.3	-	


●Body diode electrical characteristics (Source-Drain)(T_a = 25°C)

Parameter	Symbol	Conditions	Values			Unit
r ai ai i letei	Syllibol	Conditions	Min.	Тур.	Max.	Offic
Inverse diode continuous, forward current	l _S *1	T _a = 25°C	-	-	0.6	А
Forward voltage	V _{SD} *5	$V_{GS} = 0V, I_{s} = 0.6A$	-	-	1.2	V

Power Dissipation: P_D/P_D max. [%]

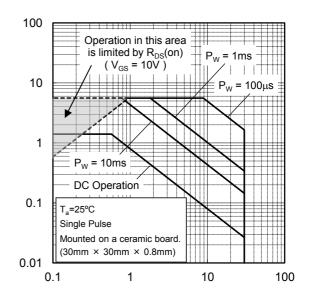

•Electrical characteristic curves

Fig.1 Power Dissipation Derating Curve

Junction Temperature : Tj [°C]

Fig.2 Maximum Safe Operating Area

Drain - Source Voltage : V_{DS} [V]

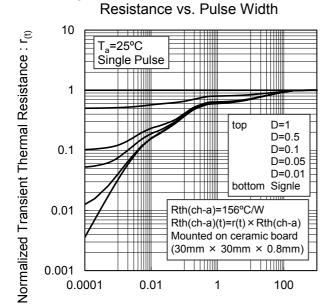
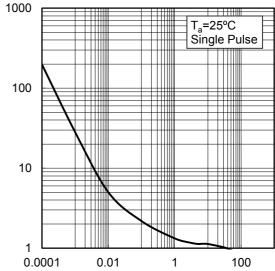



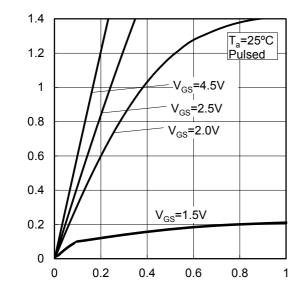
Fig.3 Normalized Transient Thermal

Pulse Width: P_W [s]

Fig.4 Single Pulse Maxmum Power dissipation

Pulse Width: Pw [s]

Peak Transient Power: P(W)


Drain Current : I_D [A]

Drain Current : I_D [A]

Drain - Source Breakdown Voltage: V_{(BR)DSS} [V]

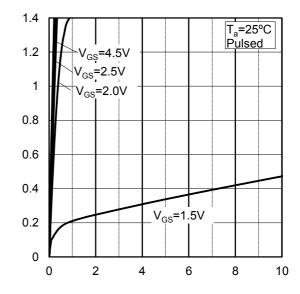

•Electrical characteristic curves

Fig.5 Typical Output Characteristics(I)

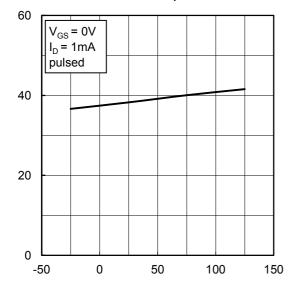

Drain - Source Voltage : V_{DS} [V]

Fig.6 Typical Output Characteristics(II)

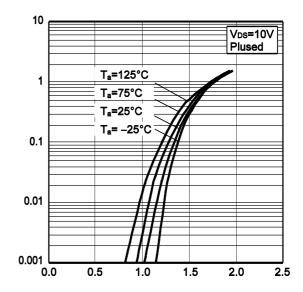

Drain - Source Voltage : V_{DS} [V]

Fig.7 Breakdown Voltage vs. Junction Temperature

Junction Temperature : T_j [°C]

Fig.8 Typical Transfer Characteristics

Gate - Source Voltage : V_{GS} [V]

Drain Current : I_D [A]

Drain Current: I_D [A]

Gate Threshold Voltage : $V_{\text{GS(th)}}\left[V\right]$

•Electrical characteristic curves

Fig.9 Gate Threshold Voltage vs. Junction Temperature

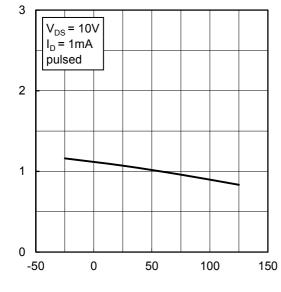
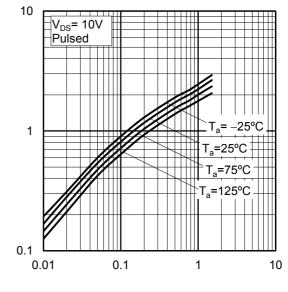



Fig.10 Transconductance vs. Drain Current

Junction Temperature : I_{D} [°C] Drain Current : I_{D} [A]

 $:R_{DS(on)}\left[m\Omega \right]$

Transconductance: g_{fs} [S]

Fig.11 Drain CurrentDerating Curve

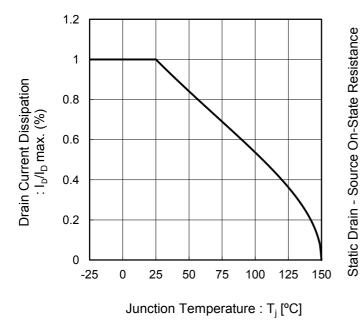
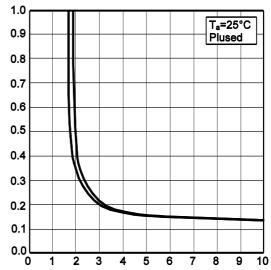



Fig.12 Static Drain - Source On - State Resistance vs. Gate Source Voltage

Gate - Source Voltage : V_{GS} [V]

•Electrical characteristic curves

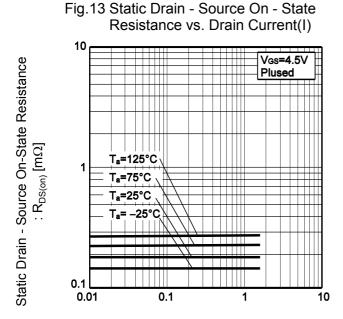
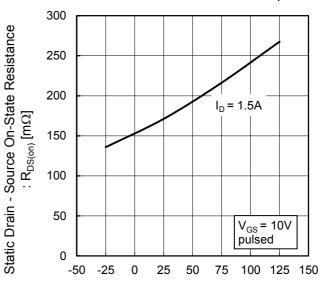



Fig.14 Static Drain - Source On - State Resistance vs. Junction Temperature

Drain Current : I_D [A]

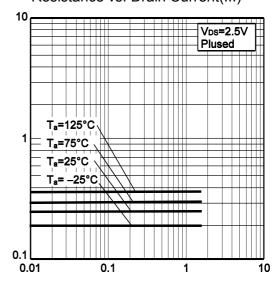
Junction Temperature : T_i [°C]

Fig.15 Static Drain - Source On - State Resistance vs. Drain Current(II) 10 V_{DS}=4.0V Plused $:R_{\text{DS(on)}}\left[m\Omega \right]$ T_a=125°C

T_a=25°C

0.01

T_a= -25°C


0.1

Drain Current : I_D [A]

Static Drain - Source On-State Resistance

 $:R_{DS(on)}\left[m\Omega \right]$

Fig.16 Static Drain-Source On-State Resistance vs. Drain Current(III)

Drain Current : I_D [A]

Static Drain - Source On-State Resistance

•Electrical characteristic curves

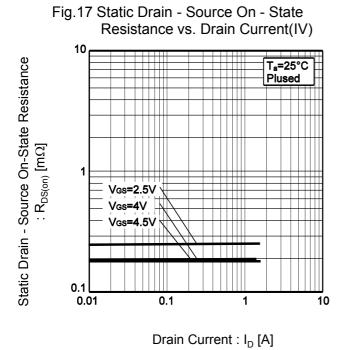
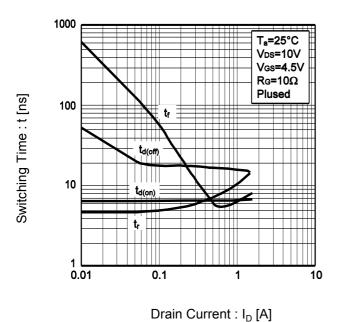


Fig.18 Typical Capacitance
vs. Drain - Source Voltage

1000


T_a=25°C
f=1MHz
V_{GS}=0V

100

C_{iss}
C_{oss}
C_{oss}
100

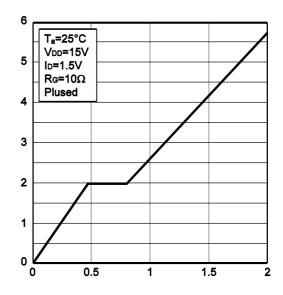
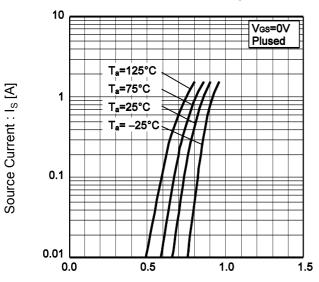

Drain - Source Voltage : V_{DS} [V]

Fig.19 Switching Characteristics

Gate - Source Voltage : V_{GS} [V]


Fig.20 Dynamic Input Characteristics

Total Gate Charge : Q_g [nC]

•Electrical characteristic curves

Fig.21 Source Current vs. Source Drain Voltage

Source-Drain Voltage : V_{SD} [V]

●Measurement circuits

Fig.1-1 Switching Time Measurement Circuit

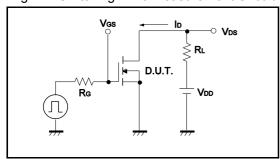


Fig.2-1 Gate Charge Measurement Circuit

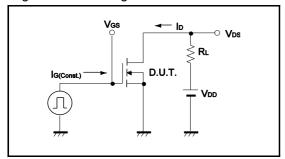


Fig.1-2 Switching Waveforms

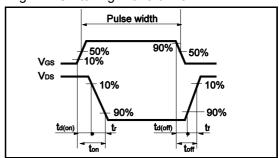
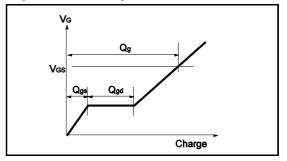
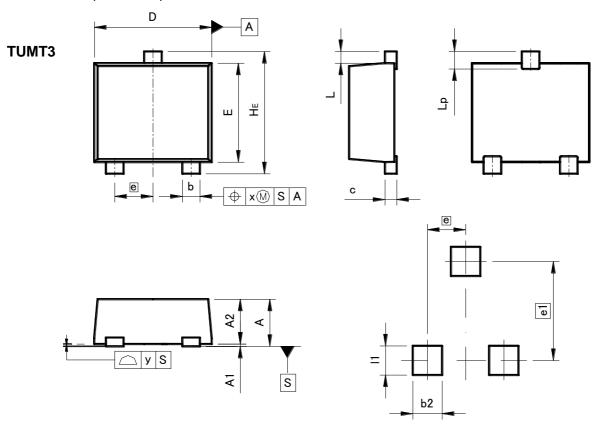




Fig.2-2 Gate Charge Waveform

●Dimensions (Unit : mm)

Patterm of terminal position areas

DIM	DIM MILIMETERS			HES
DIM	MIN	MAX	MIN	MAX
Α	_	0.85	ı	0.033
A1	0.00	0.10	0	0.004
A2	0.72	0.82	0.028	0.032
b	0.25	0.40	0.01	0.016
С	0.12	0.22	0.005	0.009
D	1.90	2.10	0.075	0.083
E	1.60	1.80	0.063	0.071
е	0.0	65	0.0	03
HE	2.00	2.20	0.079	0.087
L	0.3	0.20		01
Lp	_	0.40		0.016
х	_	0.10		0.004
у	_	0.10	_	0.004

DIM	MILIMI	MILIMETERS		HES
DIM	DIM MIN MAX		MIN	MAX
e1	1.	70	0.0	67
b2	-	0.50	_	0.02
l1	_	0.50	-	0.02

Dimension in mm/inches

Notes

- 1) The information contained herein is subject to change without notice.
- Before you use our Products, please contact our sales representative and verify the latest specifications:
- 3) Although ROHM is continuously working to improve product reliability and quality, semiconductors can break down and malfunction due to various factors. Therefore, in order to prevent personal injury or fire arising from failure, please take safety measures such as complying with the derating characteristics, implementing redundant and fire prevention designs, and utilizing backups and fail-safe procedures. ROHM shall have no responsibility for any damages arising out of the use of our Poducts beyond the rating specified by ROHM
- 4) Examples of application circuits, circuit constants and any other information contained herein are provided only to illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.
- 5) The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM or any other parties. ROHM shall have no responsibility whatsoever for any dispute arising out of the use of such technical information.
- 6) The Products are intended for use in general electronic equipment (i.e. AV/OA devices, communication, consumer systems, gaming/entertainment sets) as well as the applications indicated in this document.
- 7) The Products specified in this document are not designed to be radiation tolerant.
- 8) For use of our Products in applications requiring a high degree of reliability (as exemplified below), please contact and consult with a ROHM representative: transportation equipment (i.e. cars, ships, trains), primary communication equipment, traffic lights, fire/crime prevention, safety equipment, medical systems, servers, solar cells, and power transmission systems.
- 9) Do not use our Products in applications requiring extremely high reliability, such as aerospace equipment, nuclear power control systems, and submarine repeaters.
- 10) ROHM shall have no responsibility for any damages or injury arising from non-compliance with the recommended usage conditions and specifications contained herein.
- 11) ROHM has used reasonable care to ensur the accuracy of the information contained in this document. However, ROHM does not warrants that such information is error-free, and ROHM shall have no responsibility for any damages arising from any inaccuracy or misprint of such information.
- 12) Please use the Products in accordance with any applicable environmental laws and regulations, such as the RoHS Directive. For more details, including RoHS compatibility, please contact a ROHM sales office. ROHM shall have no responsibility for any damages or losses resulting non-compliance with any applicable laws or regulations.
- 13) When providing our Products and technologies contained in this document to other countries, you must abide by the procedures and provisions stipulated in all applicable export laws and regulations, including without limitation the US Export Administration Regulations and the Foreign Exchange and Foreign Trade Act.
- 14) This document, in part or in whole, may not be reprinted or reproduced without prior consent of ROHM.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor: