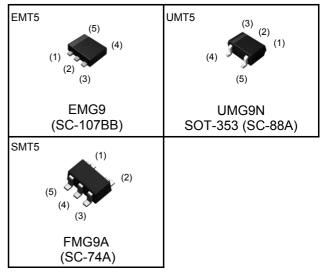
EMG9 / UMG9N / FMG9A

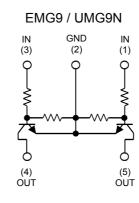
NPN 100mA 50V Complex Digital Transistors (Bias Resistor Built-in Transistors)

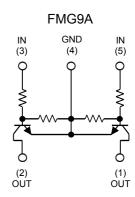
Datasheet

Parameter	Tr1 and Tr2
V _{CC}	50V
I _{C(MAX.)}	100mA
R ₁	10k Ω
R_2	10kΩ


Features

- 1) Built-In Biasing Resistors, $R_1 = R_2 = 10k\Omega$.
- 2) Two DTC114E chips in one package.
- 3) Emitter(GND)-common type.
- 4) Built-in bias resistors enable the configuration of an inverter circuit without connecting external input resistors (see inner circuit).
- 5) The bias resistors consist of thin-film resistors with complete isolation to allow negative biasing of the input. They also have the advantage of completely eliminating parasitic effects.
- 6) Only the on/off conditions need to be set for operation, making the circuit design easy.
- 7) Lead Free/RoHS Compliant.


Application


Inverter circuit, Interface circuit, Driver circuit

Outline

•Inner circuit

Packaging specifications

Part No.	Package	Package size (mm)	Taping code	Reel size (mm)	Tape width (mm)	Basic ordering unit (pcs)	Marking
EMG9	EMT5	1616	T2R	180	8	8,000	G9
UMG9N	UMT5	2021	TR	180	8	3,000	G9
FMG9A	SMT5	2928	T148	180	8	3,000	G9

● Absolute maximum ratings (Ta = 25°C)

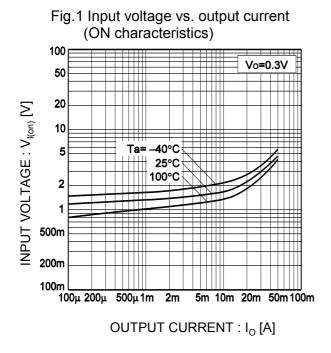
<For Tr1 and Tr2 in common>

Para	ameter	Symbol	Values	Unit
Supply voltage		V _{CC}	50	V
Input voltage		V _{IN}	-10 to +40	V
Output current		Io	50	mA
Collector current		I _{C(MAX.)} *1	100	mA
Power dissipation	EMG9 / UMG9N	- P _D *2	150 (Total) ^{*3}	mW
FMG9A			300 (Total)*4	mW
Junction temperature		T _j	150	°C
Range of storage temper	ature	T _{stg}	-55 to +150	°C

●Electrical characteristics(Ta = 25°C)

<For Tr1 and Tr2 in common>

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit	
Input voltage	$V_{l(off)}$	$V_{CC} = 5V, I_{O} = 100 \mu A$	ı	ı	0.5	V	
Input voltage	$V_{I(on)}$	$V_{\rm O} = 0.3 V, I_{\rm O} = 10 \text{mA}$	3	-	-	V	
Output voltage	$V_{O(on)}$	I _O / I _I = 10mA / 0.5mA	-	0.1	0.3	V	
Input current	I _I	V _I = 5V	-	-	0.88	mA	
Output current	I _{O(off)}	$V_{CC} = 50V, V_I = 0V$	-	-	0.5	μΑ	
DC current gain	G _I	$V_O = 5V$, $I_O = 5mA$	30	-	-	-	
Input resistance	R ₁	-	7	10	13	kΩ	
Resistance ratio	R ₂ /R ₁	-	0.8	1	1.2	-	
Transition frequency	f _T *1	$V_{CE} = 10V, I_{E} = -5mA,$ f = 100MHz	-	250	1	MHz	


^{*1} Characteristics of built-in transistor

^{*2} Each terminal mounted on a reference footprint

^{*3 120}mW per element must not be exceeded.

^{*4 200}mW per element must not be exceeded.

●Electrical characteristic curves (Ta = 25°C)

(OFF characteristics) 10m 5m 2m Ta=100°C OUTPUT CURRENT : Io [A] 1m 25°C 500μ 40°C 200µ 100µ 50μ 20µ 10µ 5μ 2μ 3.0 INPUT VOLTAGE : $V_{I(off)}[V]$

Fig.2 Output current vs. input voltage

I₁= 260μA 50 240µA 220µA 40 **DUTPUT CURRENT** : I_o [mA] 200μΑ GAIN 180µA 30 160µA 20 140µA DC CUI 120uA 10 Ta=25°C 100µA 0A 0 0

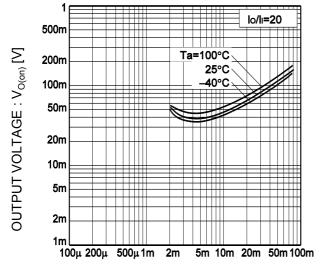

OUTPUT VOLTAGE : Vo [V]

Fig.3 Output current vs. output voltage

Fig.4 DC current gain vs. output current

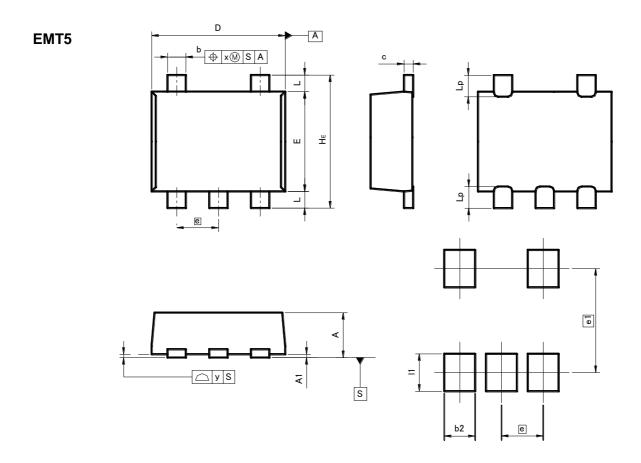
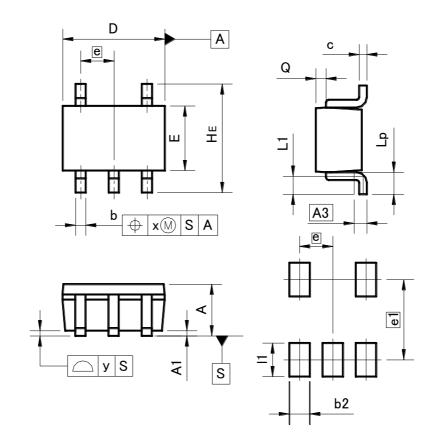

●Electrical characteristic curves (Ta = 25°C)

Fig.5 Output voltage vs. output current

OUTPUT CURRENT : I_O [A]

●Dimensions (Unit : mm)

Patterm of terminal position areas


DIM	MILIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
A1	0.00	0.10	0	0.004	
Α	0.45	0.55	0.018	0.022	
b	0.17	0.27	0.007	0.011	
С	0.08	0.18	0.003	0.007	
D	1.50	1.70	0.059	0.067	
E	1.10	1.30	0.043	0.051	
е	0.9	50	0.02		
HE	1.50	1.70	0.059	0.067	
L	0.10	0.30	0.004	0.012	
Lp	_	0.35	_	0.014	
х	_	0.10	_	0.004	
У	_	0.10		0.004	

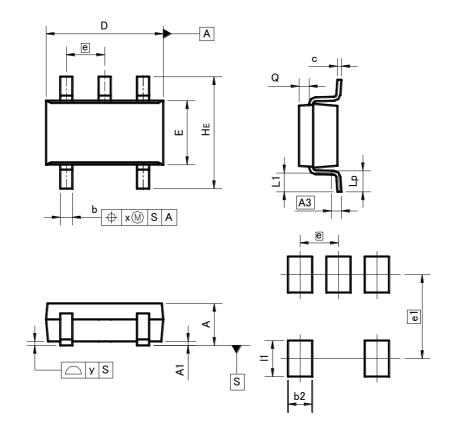
DIM	MILIMETERS		INCHES		
DIM		MAX	MIN	MAX	
e1	1.25		0.049		
b2	_	0.37	ı	0.015	
11	_	0.45	ı	0.018	

Dimension in mm/inches

●Dimensions (Unit : mm)

UMT5

Patterm of terminal position areas


DIM	MILIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	0.80	1.00	0.031	0.039	
A1	0.00	0.10	0	0.004	
A3	0.2	25	0.0	01	
b	0.15	0.30	0.006	0.012	
С	0.10	0.20	0.004	0.008	
D	1.90	2.10	0.075	0.083	
E	1.15	1.35	0.045	0.053	
е	0.0	65	0.03		
HE	2.00	2.20	0.079	0.087	
L1	0.20	0.50	0.008	0.02	
Lp	0.25	0.55	0.01	0.022	
Q	0.10	0.30	0.004	0.012	
х		0.10	- 1	0.004	
У	_	0.10		0.004	

DIM		MILIMETERS		INCHES		
		MIN	MAX	MIN	MAX	
e1		1.55		0.06		
b2		-	0.40	-	0.016	
11		ı	0.65	-	0.026	

Dimension in mm/inches

●Dimensions (Unit : mm)

SMT5

Patterm of terminal position areas

DIM	MILIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	1.00	1.30	ı	0.051	
A1	0.00	0.10	0	0.004	
A3	0.3	25	0.0	01	
b	0.25	0.40	0.01	0.016	
С	0.09	0.25	0.004	0.01	
D	2.80	3.00	0.11	0.118	
Е	1.50	1.80	0.059	0.071	
е	0.9	95	0.04		
HE	2.60	3.00	0.102	0.118	
L1	0.30	0.60	0.012	0.024	
Lp	0.40	0.70	0.016	0.028	
Q	0.20	0.30	0.008	0.012	
х		0.20		0.008	
у	_	0.10	_	0.004	

DIM	MILIMETERS		INCHES		
DIM	MIN	MAX	MIN	MAX	
e1	2.10		0.08		
b2		0.60	_	0.024	
11	-	0.90	-	0.035	

Dimension in mm/inches

Notes

No copying or reproduction of this document, in part or in whole, is permitted without the consent of ROHM Co.,Ltd.

The content specified herein is subject to change for improvement without notice.

The content specified herein is for the purpose of introducing ROHM's products (hereinafter "Products"). If you wish to use any such Product, please be sure to refer to the specifications, which can be obtained from ROHM upon request.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, ROHM shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. ROHM does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by ROHM and other parties. ROHM shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While ROHM always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. ROHM shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). ROHM shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact us.

ROHM Customer Support System

http://www.rohm.com/contact/

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

ROHM Semiconductor:

EMG9T2R FMG9AT148 UMG9NTR